Novel anodization technique using a block copolymer template for nanopatterning of titanium implant surfaces.

Precise surface nanopatterning is a promising route for predictable control of cellular behavior on biomedical materials. There is currently a gap in taking such precision engineered surfaces from the laboratory to clinically relevant implant materials such as titanium (Ti). In this work, anodization of Ti surfaces was performed in combination with block copolymer templates to create highly ordered and tunable oxide nanopatterns. Secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS) analyses showed that the composition of the anodized structures was mainly titania with small amounts of nitrogen left from the block copolymer. It was further demonstrated that these nanopatterns can be superimposed on more complex shaped Ti surfaces such as microbeads, using the same technique. Human mesenchymal stem cells were cultured on Ti microbead surfaces, with and without nanopatterns, in vitro to study the effect of nanotopography on Ti surfaces. The results presented in this work demonstrate a promising method of producing highly defined and well-arranged surface nanopatterns on Ti implant surfaces.

[1]  M. Liley,et al.  Optimizing the osteogenicity of nanotopography using block co‐polymer phase separation fabrication techniques , 2012, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[2]  R. Brånemark,et al.  Bone–titanium oxide interface in humans revealed by transmission electron microscopy and electron tomography , 2012, Journal of The Royal Society Interface.

[3]  A. Xu,et al.  One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. , 2012, Nanoscale.

[4]  J. Lausmaa,et al.  Immune complement activation is attenuated by surface nanotopography , 2011, International journal of nanomedicine.

[5]  P. Moghe,et al.  Skeletal stem cell physiology on functionally distinct titania nanotopographies. , 2011, Biomaterials.

[6]  N. Gadegaard,et al.  Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. , 2011, Nature materials.

[7]  A. K. Tyagi,et al.  Secondary ion mass spectrometry and X-ray photoelectron spectroscopy studies on TiO2 and nitrogen doped TiO2 thin films , 2011 .

[8]  B. Su,et al.  A study on the formation of titania nanopillars during porous anodic alumina through-mask anodization of Ti substrates , 2010 .

[9]  Xiaobo Hu,et al.  In situ fabrication of ordered nanoring arrays via the reconstruction of patterned block copolymer thin films. , 2010, Chemical communications.

[10]  Alexander Eychmüller,et al.  Hexagonally ordered arrays of metallic nanodots from thin films of functional block copolymers , 2010 .

[11]  Cheol-Min Park,et al.  Ordered Arrays of PS-b-P4VP Micelles by Fusion and Fission Process upon Solvent Annealing , 2009 .

[12]  Matthew J Dalby,et al.  Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. , 2009, Acta biomaterialia.

[13]  N. Gindy,et al.  Nano- and micro-sized honeycomb patterns through hierarchical self-assembly of metal-loaded diblock copolymer vesicles , 2009 .

[14]  S. Goh,et al.  Covalent functionalization of multiwalled carbon nanotubes with poly(styrene-co-acrylonitrile) by reactive melt blending , 2009 .

[15]  Joachim P Spatz,et al.  Impact of order and disorder in RGD nanopatterns on cell adhesion. , 2009, Nano letters.

[16]  Horst Kisch,et al.  The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. , 2008, Angewandte Chemie.

[17]  Gregory W. Auner,et al.  XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy , 2008 .

[18]  V. Cimrová,et al.  Steady-state electrical transport through block copolymer nanostructures deposited on smooth and rough electrodes , 2008 .

[19]  Jillian M. Buriak,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[20]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[21]  G. El-Mahdy Formation and dissolution behavior of anodic oxide films on titanium in oxalic acid solutions , 2007 .

[22]  J. Buriak,et al.  Block copolymer templated etching on silicon. , 2007, Nano letters.

[23]  John Wang,et al.  Diblock Copolymer Templated Nanohybrid Thin Films of Highly Ordered TiO2 Nanoparticle Arrays in PMMA Matrix , 2006 .

[24]  S. Krishnamoorthy,et al.  Tuning the Dimensions and Periodicities of Nanostructures Starting from the Same Polystyrene‐block‐poly(2‐vinylpyridine) Diblock Copolymer , 2006 .

[25]  Jillian M Buriak,et al.  Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces. , 2005, Journal of the American Chemical Society.

[26]  Dong Ha Kim,et al.  High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  James Runt,et al.  Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces , 2005, Journal of The Royal Society Interface.

[28]  K. Wei,et al.  Synthesis of arrayed, TiO2 needlelike nanostructures via a polystyrene-block-poly(4-vinylpyridine) diblock copolymer template , 2004 .

[29]  Sakae Tanemura,et al.  The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment , 2004 .

[30]  Koon Gee Neoh,et al.  Surface Functionalization Technique for Conferring Antibacterial Properties to Polymeric and Cellulosic Surfaces , 2003 .

[31]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[32]  R. Asahi,et al.  Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .

[33]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[34]  P. Ziemann,et al.  Ultrathin diblock copolymer/titanium laminates - a tool for nanolithography , 1998 .

[35]  J. Sullivan,et al.  Surface characterisation of plasma-nitrided titanium: an XPS study , 1995 .

[36]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[37]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[38]  C. Siedlecki,et al.  Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. , 2012, Acta biomaterialia.

[39]  S. Fujimoto,et al.  Nitrogen-doped TiO2 mesosponge layers formed by anodization of nitrogen-containing Ti alloys , 2011, Journal of Solid State Electrochemistry.

[40]  P. Chu,et al.  XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy , 2009, Journal of materials science. Materials in medicine.

[41]  A. Curtis,et al.  Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography. , 2004, Biomaterials.

[42]  K. L. Tan,et al.  Surface graft copolymerization of poly(tetrafluoroethylene) films with N-containing vinyl monomers for the electroless plating of copper , 2001 .

[43]  H. Boyen,et al.  Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films , 2000 .