Experimental and Theoretical Approach To Determine the Average Asphaltene Structure of a Crude Oil from the Golden Lane (Faja de Oro) of Mexico

The structural parameters and average molecular structures of the asphaltenes obtained from the Aguacate oilfield, located in the Golden Lane of Mexico, have been investigated combining experimenta...

[1]  S. Ok,et al.  NMR Spectroscopy Analysis of Asphaltenes , 2019, Energy & Fuels.

[2]  S. Ok,et al.  Molecular Structure and Solubility Determination of Asphaltenes , 2019, Energy & Fuels.

[3]  J. M. Domínguez,et al.  Determination of 13C NMR Chemical Shift Structural Ranges for Polycyclic Aromatic Hydrocarbons (PAHs) and PAHs in Asphaltenes: An Experimental and Theoretical Density Functional Theory Study , 2019, Energy & Fuels.

[4]  Mingming Zhu,et al.  Characterisation of subfractions of asphaltenes extracted from an oil sand using NMR, DEPT and MALDI-TOF , 2018, Journal of Petroleum Science and Engineering.

[5]  R. Rodgers,et al.  Advances in Asphaltene Petroleomics. Part 3. Dominance of Island or Archipelago Structural Motif Is Sample Dependent , 2018, Energy & Fuels.

[6]  H. D. Honorato,et al.  Diffusion-Ordered Spectroscopy Nuclear Magnetic Resonance as an Alternative Technique to Improve Asphaltene Characterization , 2018 .

[7]  S. Wise,et al.  The Influence of Aromaticity in Gas Chromatography Retention: The Case of Polycyclic Aromatic Sulfur Heterocycles , 2018, Chromatographia.

[8]  R. Rodgers,et al.  Advances in Asphaltene Petroleomics. Part 2: Selective Separation Method That Reveals Fractions Enriched in Island and Archipelago Structural Motifs by Mass Spectrometry , 2017 .

[9]  R. Rodgers,et al.  Advances in Asphaltene Petroleomics. Part 1: Asphaltenes Are Composed of Abundant Island and Archipelago Structural Motifs , 2017 .

[10]  V. Klochkov,et al.  Qualitative and quantitative analysis of oil samples extracted from some Bashkortostan and Tatarstan oilfields based on NMR spectroscopy data , 2017 .

[11]  O. Mullins,et al.  Heavy Oil Based Mixtures of Different Origins and Treatments Studied by Atomic Force Microscopy , 2017 .

[12]  Y. Ruiz-Morales,et al.  Prediction of the Ultraviolet–Visible Absorption Spectra of Polycyclic Aromatic Hydrocarbons (Dibenzo and Naphtho) Derivatives of Fluoranthene , 2017, Applied spectroscopy.

[13]  Wenxu Zhou,et al.  A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF , 2017 .

[14]  O. Mullins,et al.  Insights into asphaltene aggregate structure using ultrafast MAS solid-state 1H NMR spectroscopy , 2017 .

[15]  O. Mullins,et al.  Single-Core PAHs in Petroleum- and Coal-Derived Asphaltenes: Size and Distribution from Solid-State NMR Spectroscopy and Optical Absorption Measurements , 2016 .

[16]  S. Wise,et al.  Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. , 2016, Journal of chromatography. A.

[17]  Eric M. Kercher,et al.  XANES Measurements of Sulfur Chemistry During Asphalt Oxidation , 2015 .

[18]  Y. Ruiz-Morales,et al.  The Predictive Power of the Annellation Theory: The Case of the C26H16 Cata-Condensed Benzenoid Polycyclic Aromatic Hydrocarbons. , 2015, The journal of physical chemistry. A.

[19]  W. E. Billups,et al.  Solid- and Solution-State Nuclear Magnetic Resonance Analyses of Ecuadorian Asphaltenes: Quantitative Solid-State Aromaticity Determination Supporting the “Island” Structural Model. Aliphatic Structural Information from Solution-State 1H–13C Heteronuclear Single-Quantum Coherence Experiments , 2015 .

[20]  Mingming Zhu,et al.  Characterisation of Asphaltenes Extracted from an Indonesian Oil Sand Using NMR, DEPT and MALDI-TOF , 2015 .

[21]  Oliver C. Mullins,et al.  Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. , 2015, Journal of the American Chemical Society.

[22]  R. Zare,et al.  Laser-Based Mass Spectrometric Assessment of Asphaltene Molecular Weight, Molecular Architecture, and Nanoaggregate Number , 2015 .

[23]  P. Hazendonk,et al.  Solid-State 1H and 13C Nuclear Magnetic Resonance Spectroscopy of Athabasca Oil Sands Asphaltenes: Evidence for Interlocking π-Stacked Nanoaggregates with Intercalated Alkyl Side Chains , 2015 .

[24]  Y. Ruiz-Morales,et al.  Extended Y-rule method for the characterization of the aromatic sextets in cata-condensed polycyclic aromatic hydrocarbons. , 2014, The journal of physical chemistry. A.

[25]  Y. Ruiz-Morales,et al.  The predictive power of the annellation theory: the case of the C32H16 benzenoid polycyclic aromatic hydrocarbons. , 2014, The journal of physical chemistry. A.

[26]  V. L. Júnior,et al.  Study of Brazilian asphaltene aggregation by Nuclear Magnetic Resonance spectroscopy , 2014 .

[27]  P. Hazendonk,et al.  Validation of the Yen–Mullins Model of Athabasca Oil-Sands Asphaltenes using Solution-State 1H NMR Relaxation and 2D HSQC Spectroscopy , 2013 .

[28]  O. Mullins,et al.  Singlet–Triplet and Triplet–Triplet Transitions of Asphaltene PAHs by Molecular Orbital Calculations , 2013 .

[29]  P. Karadakov,et al.  Chemical bonding and aromaticity in furan, pyrrole, and thiophene: a magnetic shielding study. , 2013, The Journal of organic chemistry.

[30]  Y. Ruiz-Morales,et al.  Island versus Archipelago Architecture for Asphaltenes: Polycyclic Aromatic Hydrocarbon Dimer Theoretical Studies , 2013 .

[31]  R. Zare,et al.  Advances in Asphaltene Science and the Yen–Mullins Model , 2012 .

[32]  Derek D. Li,et al.  High Internal Energies of Proposed Asphaltene Structures , 2011 .

[33]  K. Norinaga,et al.  Comparison of Coal-Derived and Petroleum Asphaltenes by 13C Nuclear Magnetic Resonance, DEPT, and XRS , 2011 .

[34]  O. Mullins,et al.  Triplet Electronic Spin States of Crude Oils and Asphaltenes , 2011 .

[35]  R. Zare,et al.  Evidence for Island Structures as the Dominant Architecture of Asphaltenes , 2011 .

[36]  B. Martínez-Haya,et al.  One- and Two-Step Ultraviolet and Infrared Laser Desorption Ionization Mass Spectrometry of Asphaltenes , 2010 .

[37]  M. Gray,et al.  Molecular Structures of Asphaltenes Based on the Dissociation Reactions of Their Ions in Mass Spectrometry , 2010 .

[38]  R. Kandiyoti,et al.  Characterization of Maya Crude Oil Maltenes and Asphaltenes in Terms of Structural Parameters Calculated from Nuclear Magnetic Resonance (NMR) Spectroscopy and Laser Desorption−Mass Spectroscopy (LD−MS) , 2010 .

[39]  Y. Bouhadda,et al.  Determination of Algerian Hassi-Messaoud asphaltene aromaticity with different solid-state NMR sequences , 2010 .

[40]  O. Mullins The Modified Yen Model , 2010 .

[41]  M. Gray,et al.  Analysis of Asphaltenes and Asphaltene Model Compounds by Laser-Induced Acoustic Desorption/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry , 2009 .

[42]  R. Zare,et al.  Asphaltene Molecular-Mass Distribution Determined by Two-Step Laser Mass Spectrometry† , 2009 .

[43]  O. Mullins,et al.  Measured and Simulated Electronic Absorption and Emission Spectra of Asphaltenes , 2009 .

[44]  P. Sen,et al.  Study of Asphaltene Nanoaggregation by Nuclear Magnetic Resonance (NMR) , 2009 .

[45]  R. Zare,et al.  Two-step laser mass spectrometry of asphaltenes. , 2008, Journal of the American Chemical Society.

[46]  B. Martínez-Haya,et al.  Contrasting Perspective on Asphaltene Molecular Weight. This Comment vs the Overview of A. A. Herod, K. D. Bartle, and R. Kandiyoti , 2008 .

[47]  O. Mullins,et al.  Asphaltene Molecular Size by Fluorescence Correlation Spectroscopy , 2007 .

[48]  O. Mullins,et al.  Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments , 2007 .

[49]  O. Mullins,et al.  Electronic Absorption Edge of Crude Oils and Asphaltenes Analyzed by Molecular Orbital Calculations with Optical Spectroscopy , 2007 .

[50]  I. Gutman,et al.  NOTE ON THE Y-RULE IN CLAR THEORY , 2007 .

[51]  O. Mullins,et al.  Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. , 2006, The journal of physical chemistry. A.

[52]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[53]  Yosadara Ruiz-Morales,et al.  The Agreement between Clar Structures and Nucleus-Independent Chemical Shift Values in Pericondensed Benzenoid Polycyclic Aromatic Hydrocarbons: An Application of the Y-Rule , 2004 .

[54]  M. Gray,et al.  Quantitative Molecular Representation and Sequential Optimization of Athabasca Asphaltenes , 2004 .

[55]  Shinya Sato,et al.  Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption-Mass Spectrometry , 2004 .

[56]  H. S. Fogler,et al.  Characterization of fractionated asphaltenes by UV-vis and NMR self-diffusion spectroscopy. , 2004, Journal of colloid and interface science.

[57]  R. Kandiyoti,et al.  Comparison of the Quaternary Aromatic Carbon Contents of a Coal, a Coal Extract, and Its Hydrocracking Products by NMR Methods , 2003 .

[58]  Yosadara Ruiz-Morales,et al.  HOMO−LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I , 2002 .

[59]  Keng H. Chung,et al.  Quality of Distillates from Repeated Recycle of Residue , 2002 .

[60]  O. Mullins,et al.  X-ray Raman spectroscopy of carbon in asphaltene: light element characterization with bulk sensitivity. , 2000, Analytical chemistry.

[61]  O. Mullins,et al.  Molecular Size and Structure of Asphaltenes from Various Sources , 2000 .

[62]  O. Mullins,et al.  Asphaltene Molecular Size and Structure , 1999 .

[63]  M. Nomura,et al.  Structure and Reactivity of Petroleum-Derived Asphaltene† , 1999 .

[64]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[65]  S. Jain,et al.  Chemical structure of bitumen-derived asphaltenes by nuclear magnetic resonance spectroscopy and X-ray diffractometry , 1996 .

[66]  K. Masuda High-temperature n.m.r. analysis of aromatic units in asphaltenes and preasphaltenes derived from Vi , 1996 .

[67]  Oliver C. Mullins,et al.  Fluorescence Lifetime Studies of Crude Oils , 1994 .

[68]  S. DeCanio,et al.  Molecular representations of Ratawi and Alaska north slope asphaltenes based on liquid- and solid-state NMR : Resid upgrading , 1994 .

[69]  P. Rubini,et al.  Structural analysis by NMR and FIMS of the tar-sand bitumen of Bemolanga (Malagasy) , 1994 .

[70]  Jerry Ray Dias The Formula Periodic Table for Benzenoid Hydrocarbons and the Unifying Theory of a Periodic Table Set , 1994 .

[71]  Jerry Ray Dias Current status of isomer enumeration of practical benzenoids , 1991 .

[72]  D. Grant,et al.  Carbon-13 solid-state NMR of Argonne-premium coals , 1989 .

[73]  Liu Rongbao,et al.  Structural analysis of polycyclic aromatic hydrocarbons derived from petroleum and coal by 13C and 1H-n.m.r. spectroscopy , 1988 .

[74]  O. Strausz,et al.  Hydrocarbon structural group analysis of Athabasca asphaltene and its g.p.c. fractions by 13C n.m.r. , 1987 .

[75]  J. Delpuech,et al.  Method to evaluate benzonaphthenic carbons and donatable hydrogens in fossil fuels , 1985 .

[76]  B. C. Gerstein,et al.  Determination of chemical functionality in asphaltenes by high-resolution solid-state carbon-13 nuclear magnetic resonance spectrometry , 1982 .

[77]  E. W. Albaugh,et al.  Characterization of needle coke feedstocks by magnetic resonance spectroscopy , 1981 .

[78]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[79]  Tadashi Yoshida,et al.  Derivation of structural parameters for coal-derived oil by carbon-13 nuclear magnetic resonance spectrometry , 1980 .

[80]  E. Dickinson Structural comparison of petroleum fractions using proton and 13C n.m.r. spectroscopy , 1980 .

[81]  Toshimitsu Suzuki,et al.  Structural investigation on column-chromatographed vacuum residues of various petroleum crudes by 13C nuclear magnetic resonance spectroscopy , 1980 .

[82]  R. Jensen,et al.  Nuclear magnetic resonance spectrometry of petroleum fractions. Carbon-13 and proton nuclear magnetic resonance characterizations in terms of average molecule parameters , 1972 .

[83]  L. P. Lindeman,et al.  Carbon-13 nuclear magnetic resonance spectrometry. Chemical shifts for the paraffins through C9 , 1971 .

[84]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[85]  Derek D. Li,et al.  Chemical compositions of improved model asphalt systems for molecular simulations , 2014 .

[86]  Y. Bouhadda,et al.  Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis , 2014 .

[87]  A. Marshall,et al.  Petroleomics: Advanced Characterization of Petroleum-Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) , 2007 .

[88]  O. Mullins,et al.  Polycyclic Aromatic Hydrocarbons of Asphaltenes Analyzed by Molecular Orbital Calculations with Optical Spectroscopy , 2007 .

[89]  Y. Ruiz-Morales Molecular Orbital Calculations and Optical Transitions of PAHs and Asphaltenes , 2007 .

[90]  O. Mullins,et al.  Asphaltenes, Heavy Oils, and Petroleomics , 2006 .

[91]  E. Sheu Petroleum AsphalteneProperties, Characterization, and Issues , 2002 .

[92]  Oliver C. Mullins,et al.  Structures and dynamics of asphaltenes , 1998 .

[93]  Oliver C. Mullins,et al.  Optical Interrogation of Aromatic Moieties in Crude Oils and Asphaltenes , 1998 .

[94]  B. C. Gerstein,et al.  Hypothetical average structures of two coal liquid asphaltenes from solid state 13 C nuclear magnetic resonance and 1 H nuclear magnetic resonance data , 1983 .

[95]  M. Hehenberger,et al.  Converging SCF calculations on excited states , 1982 .

[96]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .