A fractional model for robust fractional order Smith predictor

In this paper, we propose to use a fractional order model to predict the process output in Smith predictor. The parameters of the model are determined by minimizing the error between its output and one of the processes using a genetic algorithm. After determining the model’s parameters, a fractional PID controller is proposed to improve the controlled system performances. The parameters of the controller are also determined in an optimal way by minimizing the position error taking into account the sensitivity and the complementary sensitivity conditions. Applications on a dead time and multiple lags processes have been performed, where the simulation results show that the proposed Smith predictor enhance the closed loop control system.

[1]  J. A. Tenreiro Machado,et al.  Fractional Control With a Smith Predictor , 2011 .

[2]  Djalil Boudjehem,et al.  Parameter Tuning of a Fractional-Order PI Controller Using the ITAE Criteria , 2012 .

[3]  X Xu,et al.  Analytical design and analysis of mismatched Smith predictor. , 2001, ISA transactions.

[4]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[5]  Wang,et al.  Re-design of Smith predictor systems for performance enhancement , 2000, ISA transactions.

[6]  Lei Song,et al.  Tuning of fractional PID controllers by using radial basis function neural networks , 2010, IEEE ICCA 2010.

[7]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[8]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[9]  Djalil Boudjehem,et al.  A Fractional Model Predictive Control for Fractional Order Systems , 2012 .

[10]  M. Rapaić,et al.  Optimal control of a class of fractional heat diffusion systems , 2010 .

[11]  C. C. Hang,et al.  A new Smith predictor for controlling a process with an integrator and long dead-time , 1994, IEEE Trans. Autom. Control..

[12]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[13]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[14]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[15]  B. Achar,et al.  Mittag–Leffler functions and transmission lines , 2002 .

[16]  A Seshagiri Rao,et al.  Set point weighted modified Smith predictor for integrating and double integrating processes with time delay. , 2007, ISA transactions.

[17]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[18]  Vicente Feliú Batlle,et al.  Design of a class of fractional controllers from frequency specifications with guaranteed time domain behavior , 2010, Comput. Math. Appl..

[19]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[20]  Vicente Feliu-Batlle,et al.  Smith predictor based robust fractional order control: Application to water distribution in a main irrigation canal pool , 2009 .

[21]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[22]  J. A. Tenreiro Machado,et al.  Fractional order modelling of fractional-order holds , 2012 .

[23]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[24]  J. Machado Optimal tuning of fractional controllers using genetic algorithms , 2010 .

[25]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .