Autonomous Inertial Relative Navigation with Sight-Line-Stabilized Sensors for Spacecraft Rendezvous

consists of the inertial position and velocity of the client satellite governed by a high-fidelity nonlinear orbital dynamics model. The error covariance matrix is formulated in terms of the estimation error in the relative position and velocity of the client satellite, consistent with the sensor measurements. Inertial attitude pointing and rate commands for tracking the client satellite are determined using the estimates of the client’s inertial relative position and velocity. To estimate the inertial attitude of the chaser satellite outside the space-integrated Global Positioning System/inertialnavigationsystem,anewthree-axissteady-stateanalyticalattitudeestimatorisdevelopedthatblends thegyro-andthestar-tracker-measuredattitudes.Thesimulationresultsofamidrangespacecraftrendezvoususing glideslope guidance validate this new six-state autonomous inertial relative navigation technique. The simulation resultsshowthattheimagingsensor’ssightlinecanbestabilizedattheclientsatelliteinmidrangeaccuratelyenough to enable the laser range finder to measure the range occasionally, but these measurements are not necessary for the midrangerendezvousphase,becausetheextendedKalman filtercanestimatetherangewiththeanglemeasurements of the imaging sensor.

[1]  M. Gavish,et al.  Nth-order dynamics target observability from angle measurements , 1988 .

[2]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[3]  Hari Hablani Imaging Sensor Pointing and Tracking Controller Insensitive to Gyros and Star Trackers Misalignments , 2005 .

[4]  F. Markley Fast Quaternion Attitude Estimation from Two Vector Measurements , 2002 .

[5]  F. Markley Approximate Cartesian state transition matrix , 2011 .

[6]  B. Willms Space integrated GPS/INS (SIGI) navigation system for Space Shuttle , 1999, Gateway to the New Millennium. 18th Digital Avionics Systems Conference. Proceedings (Cat. No.99CH37033).

[7]  Ian Moir,et al.  Military Avionics Systems , 2006 .

[8]  Robert M. Rogers,et al.  Applied Mathematics in Integrated Navigation Systems , 2000 .

[9]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[10]  Young W. Park,et al.  Flight Test Results from Real-Time Relative Global Positioning System Flight Experiment on STS-69 , 1996 .

[11]  George E. Sevaston,et al.  Attitude control of a high-precision space interferometer , 1993, Defense, Security, and Sensing.

[12]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[13]  Ian Moir,et al.  Military Avionics Systems: Moir/Military Avionics Systems , 2006 .

[14]  R. Mugellesi,et al.  ANALYTICAL MODELS FOR RELATIVE MOTION UNDER CONSTANT THRUST , 1990 .

[15]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[16]  F. Landis Markley,et al.  Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator , 2000 .

[18]  R. G. Reynolds QUATERNION PARAMETERIZATION AND A SIMPLE ALGORITHM FOR GLOBAL ATTITUDE ESTIMATION , 1998 .

[19]  Heather Hinkel,et al.  Laser-Based Relative Navigation and Guidance for Space Shuttle Proximity Operations , 2003 .

[20]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[21]  Frank H. Bauer,et al.  Spaceborne GPS current status and future visions , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[22]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[23]  Hari B. Hablani,et al.  Guidance and Relative Navigation for Autonomous Rendezvous in a Circular Orbit , 2002 .

[24]  M. Pittelkau Rotation Vector in Attitude Estimation , 2003 .

[25]  David K. Geller,et al.  Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital Rendezvous , 2006 .

[26]  Shijie Xu,et al.  Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous☆ , 2010 .

[27]  N. A. Shneydor,et al.  Missile guidance and pursuit , 1998 .

[28]  T. Bryan Automated capture of spacecraft , 1993 .

[29]  E. Glenn Lightsey,et al.  GPS/INS Kalman filter design for spacecraft operating in the proximity of the international space station , 2003 .