CARBON AND OXYGEN ABUNDANCES IN LOW METALLICITY DWARF GALAXIES

The study of carbon and oxygen abundances yields information on the time evolution and nucleosynthetic origins of these elements, yet remains relatively unexplored. At low metallicities (12+log(O/H) < 8.0), nebular carbon measurements are limited to rest-frame UV collisionally excited emission lines. Therefore, we present UV spectrophotometry of 12 nearby, low-metallicity, high-ionization HII regions in dwarf galaxies obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We present the first analysis of the C/O ratio in local galaxies based solely on simultaneous significant detections of the UV O^+2 and C^+2 collisionally excited lines in seven of our targets and five objects from the literature, to create a final sample of 12 significant detections. Our sample is complemented by optical SDSS spectra, from which we measured the nebular physical conditions and oxygen abundances using the direct method. At low metallicity (12+log(O/H) < 8.0), no clear trend is evident in C/O vs. O/H for the present sample given the large dispersion observed. When combined with recombination line observations at higher values of O/H, a general trend of increasing C/O with increasing O/H is also viable, but with some significant outliers. Additionally, we find the C/N ratio appears to be constant (but with significant scatter) over a large range in oxygen abundance, indicating carbon is predominantly produced by similar nucleosynthetic mechanisms as nitrogen. If true, and our current understanding of nitrogen production is correct, this would indicate that primary production of carbon (a flat trend) dominates at low metallicity, but quasi-secondary production (an increasing trend) becomes prominent at higher metallicities. A larger sample will be needed to determine the true nature and dispersion of the relation.

[1]  Bonn,et al.  VLT spectroscopy of low-metallicity emission-line galaxies: abundance patterns and abundance discrepancies , 2011, 1111.1392.

[2]  Kevin France,et al.  The Cosmic Origins Spectrograph , 1998 .

[3]  H. Ferguson,et al.  THE PRIMEVAL POPULATIONS OF THE ULTRA-FAINT DWARF GALAXIES , 2012, 1206.0941.

[4]  R. Terlevich,et al.  The stellar populations and evolution of H II galaxies - I. High signal-to-noise optical spectroscopy. , 1986 .

[5]  G. Carraro,et al.  EXTRAGALACTIC CHEMICAL ABUNDANCES: DO H ii REGIONS AND YOUNG STARS TELL THE SAME STORY? THE CASE OF THE SPIRAL GALAXY NGC 300 , 2009, 0905.2791.

[6]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[7]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[8]  M. Mollá,et al.  Low and intermediate mass star yields: The evolution of carbon abundances , 2004, astro-ph/0411746.

[9]  Aniruddha R. Thakar,et al.  The Third Data Release of the Sloan Digital Sky Survey , 2004 .

[10]  F. Bresolin,et al.  KECK HIRES SPECTROSCOPY OF EXTRAGALACTIC H ii REGIONS: C AND O ABUNDANCES FROM RECOMBINATION LINES , 2009, 0905.2532.

[11]  J. Chengalur,et al.  When are extremely metal-deficient galaxies extremely metal-deficient? , 2010, 1003.6026.

[12]  S. Sagan,et al.  Interstellar Abundance Gradients in NGC 2403: Comparison to M33 , 1997 .

[13]  J. Hjorth,et al.  Gravitationally lensed galaxies at 2 < z < 3.5: direct abundance measurements of Ly α emitters , 2012, 1209.0775.

[14]  Bonn,et al.  Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5m APO observations , 2012, 1207.5971.

[15]  The early star generations: the dominant effect of rotation on the cno yields , 2005, astro-ph/0510560.

[16]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[17]  I. Reid,et al.  ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M ≲ 1 M☉ , 2012, 1212.1159.

[18]  D. Garnett Nitrogen in irregular galaxies , 1990 .

[19]  R. J. Talbot,et al.  The carbon abundance in the Magellanic Clouds from IUE observations of H II regions , 1982 .

[20]  B. Shiao,et al.  The ultraviolet sky: An overview from the GALEX surveys , 2013, 1312.3281.

[21]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[22]  E.Terlevich,et al.  The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations , 1994, astro-ph/9411011.

[23]  Naoki Yoshida,et al.  THE ORIGIN OF THE MOST IRON-POOR STAR , 2014, 1409.4424.

[24]  C. Steidel,et al.  The most metal-poor damped Lyα systems: insights into chemical evolution in the very metal-poor regime★ , 2011, 1106.2805.

[25]  L. Mattsson The origin of carbon: Low-mass stars and an evolving, initially top-heavy IMF? , 2010, 1003.3474.

[26]  E. Grebel,et al.  Strong Emission Line H II Galaxies in the Sloan Digital Sky Survey. I. Catalog of DR1 Objects with Oxygen Abundances from Te Measurements , 2004, astro-ph/0404133.

[27]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[28]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[29]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[30]  Very low-metallicity massive stars: - Pre-SN evolution models and primary nitrogen production , 2006, astro-ph/0608170.

[31]  M. Asplund,et al.  The Evolution of the C/O Ratio in Metal-poor Halo Stars , 2003, astro-ph/0310472.

[32]  Georges Meynet,et al.  The first stars: CEMP--no stars and signatures of spinstars , 2014, 1412.5754.

[33]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[34]  R. Kennicutt,et al.  Spatially resolved optical and near infrared spectroscopy of I Zw 18 , 1993 .

[35]  B. Gibson,et al.  Galactic chemical evolution: stellar yields and the initial mass function , 2015, 1505.03341.

[36]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[37]  C. Chiappini,et al.  Are C-rich ultra iron-poor stars also He-rich? , 2010, 1004.5024.

[38]  D. Fabbian,et al.  The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars , 2008, 0810.0281.

[39]  M. Groenewegen,et al.  New theoretical yields of intermediate mass stars , 1996, astro-ph/9610030.

[40]  C. Esteban,et al.  The abundance discrepancy problem in HII regions , 2006, astro-ph/0610903.

[41]  G. Stasińska,et al.  The chemical composition of the Orion star forming region. II. Stars, gas, and dust: the abundance discrepancy conundrum , 2010, 1010.5903.

[42]  F. Bresolin,et al.  Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution , 2014, 1406.3986.

[43]  The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale , 2003, astro-ph/0303452.

[44]  V. Lipovetsky,et al.  Hubble Space Telescope Observations of the Unusual Blue Compact Dwarf Galaxy Markarian 996 , 1996 .

[45]  M. Gavilán,et al.  Low and intermediate mass star yields. II. The evolution of nitrogen abundances , 2006, astro-ph/0601326.

[46]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[47]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[48]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[49]  C. Steidel,et al.  C, N, O abundances in the most metal-poor damped Lyman alpha systems★ , 2007, 0712.1829.

[50]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[51]  K. Bekki,et al.  Implications of a non-universal IMF from C, N, and O abundances in very metal-poor Galactic stars and damped Lyα absorbers , 2011, 1103.0033.

[53]  E. Tolstoy,et al.  Carbon-enhanced metal-poor stars in dwarf galaxies , 2015, 1506.03451.

[54]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[55]  C. Lintott,et al.  Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies , 2009, 0907.4155.

[56]  L. Christensen,et al.  Testing Metallicity Indicators at Z ~ 1.4 with the Gravitationally Lensed Galaxy CASSOWARY 20* , 2013, 1311.5092.

[57]  Bonn,et al.  SBS 0335-052E+W: deep VLT/FORS+UVES spectroscopy of the pair of the lowest-metallicity blue compact dwarf galaxies , 2009, 0907.2116.

[58]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[59]  T. Beers,et al.  First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements , 2004, astro-ph/0409536.

[60]  C. Esteban,et al.  Optical Recombination Lines of Heavy Elements in Giant Extragalactic H II Regions , 2002, astro-ph/0208313.

[61]  C. Scarlata,et al.  Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS , 2015, 1505.05149.

[62]  M. Fumagalli,et al.  STOCHASTIC STAR FORMATION AND A (NEARLY) UNIFORM STELLAR INITIAL MASS FUNCTION , 2011, 1105.6101.

[63]  Heidelberg,et al.  An investigation of the luminosity-metallicity relation for a large sample of low-metallicity emission-line galaxies , 2009, 0908.2539.

[64]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[65]  R. Bohlin HUBBLE SPACE TELESCOPE SPECTROPHOTOMETRY AND MODELS FOR SOLAR ANALOGS , 2010, 1002.4381.

[66]  M. Peimbert,et al.  IUE and visual observations of the Orion nebula and IC 418 : the carbon abundance. , 1980 .

[67]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[68]  T. Beers,et al.  Carbon-enhanced Metal-poor Stars. I. Chemical Compositions of 26 Stars , 2006, astro-ph/0609702.

[69]  Benjamin D. Johnson,et al.  DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES , 2012, 1205.6782.

[70]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[71]  Heavy-Element Abundances in Blue Compact Galaxies , 1998, astro-ph/9811387.

[72]  D. Garnett Electron temperature variations and the measurement of nebular abundances , 1992 .

[73]  C. Steidel,et al.  THE REST-FRAME ULTRAVIOLET SPECTRA OF UV-SELECTED ACTIVE GALACTIC NUCLEI AT z ∼ 2–3 , 2010, 1012.0075.

[74]  Benjamin D. Johnson,et al.  COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES , 2009, 0909.5205.

[75]  R. Kennicutt,et al.  NEW RADIAL ABUNDANCE GRADIENTS FOR NGC 628 AND NGC 2403 , 2013, 1309.0584.

[76]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[77]  J. Moustakas,et al.  CHAOS I. DIRECT CHEMICAL ABUNDANCES FOR H II ?> REGIONS IN NGC 628 , 2015, 1501.02270.

[78]  C. Esteban,et al.  Carbon, Nitrogen, and Oxygen Galactic Gradients: A Solution to the Carbon Enrichment Problem , 2004, astro-ph/0408398.

[79]  E. Skillman,et al.  Testing CNO Enrichment Scenarios in Metal-poor Galaxies with Hubble Space Telescope Spectroscopy , 1997, astro-ph/9709280.

[80]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[81]  K. Nomoto,et al.  ABUNDANCE PROFILING OF EXTREMELY METAL-POOR STARS AND SUPERNOVA PROPERTIES IN THE EARLY UNIVERSE , 2013, 1309.6734.

[82]  M. Peimbert Temperature Determinations of H II Regions , 1967 .

[83]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[84]  C. Chiappini,et al.  Oxygen, carbon and nitrogen evolution in galaxies , 2002, astro-ph/0209627.

[85]  D. Osterbrock,et al.  An analysis of the narrow-line profiles in high-ionization Seyfert galaxies. , 1984 .

[86]  R. Terlevich,et al.  Carbon in Spiral Galaxies from HUBBLE SPACE TELESCOPE Spectroscopy , 1998, astro-ph/9810026.

[87]  M. Edmunds,et al.  On the Cosmic Origins of Carbon and Nitrogen , 2000, astro-ph/0004299.

[88]  C. Morisset,et al.  Discrepancies between the [O iii] and [S iii] temperatures in H ii regions , 2012, 1209.0808.

[89]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[90]  J. Wheeler,et al.  Abundance Ratios as a Function of Metallicity , 1989 .

[91]  P. Bonifacio,et al.  Carbon-enhanced metal-poor stars: the most pristine objects? , 2013, 1303.1791.

[92]  Á. López-Sánchez,et al.  The Localized Chemical Pollution in NGC 5253 Revisited: Results from Deep Echelle Spectrophotometry , 2006, astro-ph/0609498.

[93]  J. Melnick,et al.  Warmers: the missing link between Starburst and Seyfert galaxies , 1985 .

[94]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[95]  M. Ruiz,et al.  Chemical Composition of Two H II Regions in NGC 6822 Based on VLT Spectroscopy , 2005, astro-ph/0507084.

[96]  T. Thuan,et al.  Oxygen Abundance Determination in H II Regions: The Strong Line Intensities-Abundance Calibration Revisited , 2005 .

[97]  M. Pettini,et al.  The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z∼ 2 , 2009, 0906.2412.

[98]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[99]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[100]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[101]  L. Kewley,et al.  The host galaxies and classification of active galactic nuclei , 2006, astro-ph/0605681.

[102]  M. Oguri,et al.  THE PHYSICAL CONDITIONS, METALLICITY AND METAL ABUNDANCE RATIOS IN A HIGHLY MAGNIFIED GALAXY AT z = 3.6252 , 2013, 1310.6695.

[103]  Iap,et al.  Galaxies with Wolf-Rayet signatures in the low-redshift Universe. A survey using the Sloan Digital Sky Survey , 2008, 0805.1073.

[104]  V. Lipovetsky,et al.  Heavy element abundances in a new sample of low-metallicity blue compact galaxies , 1995 .

[105]  Abundances in Spiral Galaxies: Evidence for Primary Nitrogen Production , 1998, astro-ph/9802147.

[106]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[107]  K. Venn CNO Abundances and the Evolutionary Status of Galactic, A-Type Supergiants , 1995 .

[108]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[109]  Paul S. Smith,et al.  Candidate type II quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III , 2013, 1307.7289.

[110]  Manuel Peimbert,et al.  ON THE O/H, Mg/H, Si/H, AND Fe/H GAS AND DUST ABUNDANCE RATIOS IN GALACTIC AND EXTRAGALACTIC H ii REGIONS , 2010, 1006.0692.

[111]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[112]  The origin and chemical evolution of carbon in the Galactic thin and thick discs , 2006, astro-ph/0601130.

[113]  D. Casebeer,et al.  On the Determination of N and O Abundances in Low-Metallicity Systems , 2006, astro-ph/0603654.