Uniqueness and Approximation of a Photometric Shape-from-Shading Model

We deal with an inverse problem where we want to determine the surface of an object using the information contained in two or more pictures which correspond to different light conditions. In particular, we will examine the case where the light source direction varies between the pictures, and we will show how this additional information allows us to obtain a uniqueness result solving the well-known convex/concave ambiguity of the shape-from-shading problem. We will prove a uniqueness result for weak (Lipschitz continuous) solutions that improves previous results in [R. Kozera, Appl. Math. Comput., 44 (1991), pp. 1--103] and [R. Onn and A. Bruckstein, Int. J. Comput. Vision, 5 (1990), pp. 105--113]. We also propose some approximation schemes for the numerical solution of this problem and analyze the properties of two approximation schemes: an upwind finite difference scheme and a semi-Lagrangian scheme. Finally, we present some numerical tests on smooth and nonsmooth surfaces coming from virtual and real i...

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[3]  Nahum Kiryati,et al.  Photometric stereo under perspective projection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[4]  Olivier Faugeras,et al.  A mathematical and algorithmic study of the Lambertian SFS problem for orthographic and pinhole cameras , 2003 .

[5]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[6]  Ping-Sing Tsai,et al.  Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jean-Denis Durou,et al.  Integrating the Normal Field of a Surface in the Presence of Discontinuities , 2009, EMMCVPR.

[8]  Berthold K. P. Horn SHAPE FROM SHADING: A METHOD FOR OBTAINING THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ONE VIEW , 1970 .

[9]  M. Brooks,et al.  Revisiting Pentland's estimator of light source direction , 1994 .

[10]  Edwin R. Hancock,et al.  A probabilistic framework for specular shape-from-shading , 2002, Object recognition supported by user interaction for service robots.

[11]  Clésio Luiz Tozzi,et al.  Shape from shading with perspective projection and camera calibration , 1996, Comput. Graph..

[12]  Roberto Mecca,et al.  Shape Reconstruction of Symmetric Surfaces Using Photometric Stereo , 2013, Innovations for Shape Analysis, Models and Algorithms.

[13]  Gabriele Ulich,et al.  Provably Convergent Methods for the Linear and Nonlinear Shape from Shading Problem , 1998, Journal of Mathematical Imaging and Vision.

[14]  Pierre Gurdjos,et al.  Towards shape from shading under realistic photographic conditions , 2004, ICPR 2004.

[15]  Jean-Denis Durou,et al.  Integration of a Normal Field without Boundary Condition , 2007 .

[16]  Jean-Denis Durou,et al.  Numerical methods for shape-from-shading: A new survey with benchmarks , 2008, Comput. Vis. Image Underst..

[17]  Shree K. Nayar,et al.  Generalization of the Lambertian model and implications for machine vision , 1995, International Journal of Computer Vision.

[18]  Mark S. Drew Direct Solution of Orientation-from-Color Problem Using a Modification of Pentland's Light Source Direction Estimator , 1996, Comput. Vis. Image Underst..

[19]  Michael A. Penna,et al.  A Shape From Shading Analysis for a Single Perspective Image of a Polyhedron , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[21]  Elisabeth Rouy Approximation numérique des solutions de viscosité des équations d'Hamilton-Jacobi et exemple , 1992 .

[22]  Dimitris N. Metaxas,et al.  Coupled lighting direction and shape estimation from single images , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  David A. Forsyth,et al.  Reflections on Shading , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  R. Kozera Existence and uniqueness in photometric stereo , 1991 .

[25]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[26]  Olivier D. Faugeras,et al.  "Perspective shape from shading" and viscosity solutions , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Preprint Nr Numerical Algorithms for Perspective Shape from Shading , 2009 .

[28]  Yang Wang,et al.  Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry , 2002, ECCV.

[29]  Kyoung Mu Lee,et al.  Shape from Shading with Perspective Projection , 1994 .

[30]  A. James Stewart,et al.  Toward Accurate Recovery of Shape from Shading Under Diffuse Lighting , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Michael Brady,et al.  Integrating stereo and photometric stereo to monitor the development of glaucoma , 1991, Image Vis. Comput..

[32]  C.-C. Jay Kuo,et al.  Shape from Shading with a Generalized Reflectance Map Model , 1997, Comput. Vis. Image Underst..

[33]  Michael Breuß,et al.  Perspective Shape from Shading: Ambiguity Analysis and Numerical Approximations , 2012, SIAM J. Imaging Sci..

[34]  B. Hapke A THEORETICAL PHOTOMETRIC FUNCTION FOR THE LUNAR SURFACE , 1963 .

[35]  Takeo Kanade,et al.  Shape from interreflections , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[36]  T. Rindfleisch Photometric method for lunar topography. , 1966 .

[37]  Jean-Denis Durou,et al.  Unambiguous Photometric Stereo Using Two Images , 2011, ICIAP.

[38]  Reinhard Klette,et al.  A New Algorithm for Gradient Field Integration , 2001 .

[39]  S. Ishikawa Fixed points and iteration of a nonexpansive mapping in a Banach space , 1976 .

[40]  Yee-Hong Yang,et al.  Shape from shading for non-Lambertian surfaces , 1994, Proceedings of 1st International Conference on Image Processing.

[41]  J. V. Diggelen A photometric investigation of the slopes and the heights of the ranges of hills in the Maria of the Moon , 1951 .

[42]  Berthold K. P. Horn Obtaining shape from shading information , 1989 .

[43]  H. Rademacher Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale , 1919 .

[44]  K. Deguchi,et al.  Shape reconstruction from an endoscope image by shape-from-shading technique for a point light source at the projection center , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[45]  Alfred M. Bruckstein,et al.  Integrability disambiguates surface recovery in two-image photometric stereo , 1992, International Journal of Computer Vision.

[46]  A. Chambolle A uniqueness result in the theory of stereo vision : coupling shape from shading and binocular information allows unambiguous depth reconstruction , 1994 .

[47]  Yehezkel Yeshurun,et al.  A new perspective [on] shape-from-shading , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.