Roadmap for micro-optics fabrication

When considering a roadmap for technology development, the essence of the problem can be framed by two simple questions: 1) Where have we been? and 2) Where do we need to go? The first question is relatively easy to answer with some research, but answering the second requires significantly more effort. In this paper, we address these questions as they relate to the fabrication of diffractive and refractive micro-optics. A brief historical overview of micro-optics fabrication is presented, followed by our predictions on the future of the field. Examples of future applications, technical challenges, and supporting technologies required for manufacturing of different types of micro-optics are discussed.

[1]  Z. S. Liu,et al.  Guided-mode resonance Brewster filter. , 1998, Optics letters.

[2]  S. Chou,et al.  Sub-10 nm imprint lithography and applications , 1997 .

[3]  P. Chavel,et al.  High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm. , 1998, Optics letters.

[4]  M Kufner,et al.  Monolithic integration of microlens arrays and fiber holder arrays in poly(methyl methacrylate) with fiber self-centering. , 1995, Optics letters.

[5]  Thomas J. Suleski,et al.  Wafer-scale replication of glass micro-optics for optical communications , 2000 .

[6]  H. Herzig Micro-Optics : Elements, Systems And Applications , 1997 .

[7]  Mary K. Hibbs-Brenner,et al.  Optoelectronic integrated circuits and packaging III : 28-29 January 1999, San Jose, California , 1999 .

[8]  P. Chavel,et al.  Synthesis of a subwavelength-pulse-width spatially modulated array illuminator for 0.633 microm. , 1996, Optics letters.

[9]  Evan L. Goldstein,et al.  Lightwave Micromachines for Optical Networks , 2001 .

[10]  George M. Whitesides,et al.  Fabrication of Three Dimensional Microstructures: Microtransfer Molding , 1996 .

[11]  Rajaram Bhat,et al.  Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1•5 μm , 1991 .

[12]  H. Craighead,et al.  Diffractive lens fabricated with mostly zeroth-order gratings. , 1996, Optics letters.

[13]  M. Levenson,et al.  Improving resolution in photolithography with a phase-shifting mask , 1982, IEEE Transactions on Electron Devices.

[14]  Hans Peter Herzig,et al.  Fabrication technologies for micro-optical elements with arbitrary surfaces , 2000, SPIE MOEMS-MEMS.

[15]  Erich Spitz,et al.  Photolithographic fabrication of thin film lenses , 1972 .

[16]  N. Chinone,et al.  Novel method to fabricate corrugation for a λ/4-shifted distributed feedback laser using a grating photomask , 1989 .

[17]  Hans Peter Herzig,et al.  Simple technique for replication of micro-optical elements , 1998 .

[18]  Geoff R. Nash,et al.  Micromachined optical concentrators for IR LEDs , 2000, SPIE MOEMS-MEMS.

[19]  L. P. Muray,et al.  Arrayed miniature electron beam columns for high throughput sub-100 nm lithography , 1992 .

[20]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[21]  Erik H. Anderson,et al.  Circularly symmetric operation of a concentric‐circle‐grating, surface‐ emitting, AlGaAs/GaAs quantum‐well semiconductor laser , 1992 .

[22]  Michael R. Feldman,et al.  Micro-optics integration and assemblies : 29-30 January 1998, San Jose, California , 1998 .

[23]  E. H. Linfoot Principles of Optics , 1961 .

[24]  S. K. Case,et al.  Optical elements with ultrahigh spatial-frequency surface corrugations. , 1983, Applied optics.

[25]  W Stork,et al.  Artificial distributed-index media fabricated by zero-order gratings. , 1991, Optics letters.

[26]  Ray T. Chen,et al.  Cross-talk analysis for optical backplane using two-dimensional beam array from VCSEL and microlens array , 2000, Photonics West - Optoelectronic Materials and Devices.

[27]  Alan D. Kathman,et al.  Emerging fabrication methods for diffractive optical elements , 1999, Photonics West.

[28]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[29]  Ernst-Bernhard Kley,et al.  Fabrication of microlens arrays in CaF2 by ion milling , 2000, SPIE MOEMS-MEMS.

[30]  P. P. Clark,et al.  Production of kinoforms by single point diamond machining , 1989 .

[31]  Karl-Heinz Brenner,et al.  Stacked Micro-optical Systems , 1997 .

[32]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[33]  100 years of x rays: Impact on micro‐ and nanofabrication , 1995 .

[34]  T. Suleski,et al.  Fabrication of high-spatial-frequency gratings through computer-generated near-field holography. , 1999, Optics letters.

[35]  J N Mait,et al.  Diffractive lens fabricated with binary features less than 60 nm. , 2000, Optics letters.

[36]  A. Larsson,et al.  Small-feature-size fan-out kinoform etched in GaAs. , 1996, Applied optics.

[37]  H. Nishihara,et al.  Fabrication of micro lenses using electron-beam lithography. , 1981, Optics letters.

[38]  F. Nikolajeff,et al.  Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing. , 1997, Applied optics.

[39]  J. M. Gibson,et al.  New approach to projection-electron lithography with demonstrated 0.1 μm linewidth , 1990 .