MicroRNAs--targeting and target prediction.

MicroRNAs (miRNAs) are a class of small noncoding RNAs that can regulate many genes by base pairing to sites in mRNAs. The functionality of miRNAs overlaps that of short interfering RNAs (siRNAs), and many features of miRNA targeting have been revealed experimentally by studying miRNA-mimicking siRNAs. This review outlines the features associated with animal miRNA targeting and describes currently available prediction tools.

[1]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[2]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[3]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[4]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[5]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[6]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[7]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[8]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[9]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[10]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[11]  P. Linsley,et al.  MicroRNA-like off-target transcript regulation by siRNAs is species specific. , 2009, RNA.

[12]  P. Macdonald,et al.  Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method , 2005, BMC Genomics.

[13]  John J Rossi,et al.  MicroRNAs in Disease and Potential Therapeutic Applications. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[14]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[15]  P. Sharp,et al.  Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites , 2008, Science.

[16]  Sean R Eddy,et al.  How do RNA folding algorithms work? , 2004, Nature Biotechnology.

[17]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[18]  Lukasz A. Kurgan,et al.  HuMiTar: A sequence-based method for prediction of human microRNA targets , 2008, Algorithms for Molecular Biology.

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[21]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[22]  Louise C. Showe,et al.  Naïve Bayes for microRNA target predictions - machine learning for microRNA targets , 2007, Bioinform..

[23]  Vesselin Baev,et al.  MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence , 2005, Nucleic Acids Res..

[24]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[25]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[26]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[27]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[28]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[29]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[30]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[31]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[32]  Brian D Athey,et al.  New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. , 2009, Genome research.

[33]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[34]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[35]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[36]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[37]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[38]  R. Gregory,et al.  Many roads to maturity: microRNA biogenesis pathways and their regulation , 2009, Nature Cell Biology.

[39]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[40]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[41]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[42]  Reuven Agami,et al.  miR-148 targets human DNMT3b protein coding region. , 2008, RNA.

[43]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[44]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[45]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[46]  L. Lim,et al.  Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. , 2006, RNA.

[47]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[48]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[49]  Sanghamitra Bandyopadhyay,et al.  TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples , 2009, Bioinform..

[50]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[51]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[52]  Martti T. Tammi,et al.  MicroTar: predicting microRNA targets from RNA duplexes , 2006, BMC Bioinformatics.

[53]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[54]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[55]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[56]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[57]  R. Plasterk,et al.  Substrate requirements for let-7 function in the developing zebrafish embryo. , 2004, Nucleic acids research.

[58]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[59]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[60]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[61]  Boqin Qiang,et al.  Improving the prediction of human microRNA target genes by using ensemble algorithm , 2007, FEBS letters.

[62]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[63]  Paul Ahlquist,et al.  Statistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification , 2009, PLoS Comput. Biol..

[64]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[65]  Yu-Ping Wang,et al.  MiRTif: a support vector machine-based microRNA target interaction filter , 2008, BMC Bioinformatics.

[66]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[67]  Mihaela Zavolan,et al.  Reproductive toxicology. Trichloroethylene. , 1997, BMC Bioinformatics.

[68]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[69]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[70]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[71]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[72]  F. Noubissi,et al.  CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. , 2009, Molecular cell.

[73]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[74]  Uwe Ohler,et al.  Spatial preferences of microRNA targets in 3' untranslated regions , 2007, BMC Genomics.

[75]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[76]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[77]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[79]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[80]  Anastasia Khvorova,et al.  3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets , 2006, Nature Methods.

[81]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets. , 2004 .