Establishment and characterization of a megakaryoblast cell line with amplification of MLL

[1]  Thomas Ried,et al.  Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping , 1997, Nature Genetics.

[2]  D. Ledbetter,et al.  Multicolor Spectral Karyotyping of Human Chromosomes , 1996, Science.

[3]  T. Rabbitts,et al.  An Mll–AF9 Fusion Gene Made by Homologous Recombination Causes Acute Leukemia in Chimeric Mice: A Method to Create Fusion Oncogenes , 1996, Cell.

[4]  J. Yunis,et al.  MLL tandem duplication and multiple splicing in adult acute myeloid leukemia with normal karyotype. , 1996, Leukemia.

[5]  Y. Tohyama,et al.  A novel factor‐dependent human myelodysplastic cell line, MDS92, contains haemopoietic cells of several lineages , 1995, British journal of haematology.

[6]  H. Hassan,et al.  Characteristic biological features of human megakaryoblastic leukaemia cell lines. , 1995, Leukemia research.

[7]  W. Dai,et al.  HIMeg-1, a cell line derived from a CML patient, is capable of monocytic and megakaryocytic differentiation. , 1995, Leukemia.

[8]  R. Berger,et al.  Molecular basis of IIq23 rearrangements in hematopoietic malignant proliferations , 1995, Genes, chromosomes & cancer.

[9]  A. Borkhardt,et al.  Recurrent chromosomal translocations and fusion genes in leukemia-lymphoma cell lines. , 1995, Leukemia.

[10]  M. Tanimoto,et al.  Establishment and characterization of an immature human megakaryoblastic cell line, MEG-A2. , 1995, Leukemia.

[11]  T. Rabbitts,et al.  Chromosomal translocations in human cancer , 1994, Nature.

[12]  J. Rowley,et al.  11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Vainchenker,et al.  Growth and differentiation of the human megakaryoblastic cell line (ELF- 153): a model for early stages of megakaryocytopoiesis , 1994 .

[14]  M. Caligiuri,et al.  ALL-1 partial duplication in acute leukemia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Povey,et al.  REPORT on the Third International Workshop on Chromosome 9 , 1994 .

[16]  J. Rowley,et al.  Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA- topoisomerase II , 1993 .

[17]  Rowley Jd Rearrangements involving chromosome band 11Q23 in acute leukaemia. , 1993 .

[18]  J. Sklar,et al.  Establishment of cell lines from B-cell precursor acute lymphoblastic leukemia. , 1993, Leukemia.

[19]  J. Rowley,et al.  Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. , 1993, The New England journal of medicine.

[20]  K. Kawakami,et al.  Clinical importance of CD7 expression in acute myelocytic leukemia. The Japan Cooperative Group of Leukemia/Lymphoma. , 1993, Blood.

[21]  W. van Putten,et al.  Autonomous proliferation of leukemic cells in vitro as a determinant of prognosis in adult acute myeloid leukemia. , 1993, The New England journal of medicine.

[22]  N. Zeleznik-Le,et al.  Affinity-purified CCAAT-box-binding protein (YEBP) functionally regulates expression of a human class II major histocompatibility complex gene and the herpes simplex virus thymidine kinase gene. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Taillon-Miller,et al.  Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: identification of 11q23 translocation breakpoints with a yeast artificial chromosome. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Taetle,et al.  Characterization of a factor-dependent acute leukemia cell line with translocation (3;3)(q21;q26) , 1990 .

[25]  M. Lieberman,et al.  In vitro establishment and characterization of a human megakaryoblastic cell line , 1990 .

[26]  Y. Hayashi,et al.  Establishment of a human leukaemic cell line (CMK) with megakaryocytic characteristics from a Down's syndrome patient with acute megakaryoblastic leukaemia , 1989, British journal of haematology.

[27]  T. Adachi,et al.  Cell surface phenotyping of megakaryoblasts. , 1987, Blood.

[28]  D. Watson,et al.  Amplification and rearrangement of Hu-ets-1 in leukemia and lymphoma with involvement of 11q23. , 1986, Science.

[29]  J. Rowley,et al.  Chromosomal localization and characterization of c-abl in the t(6;9) of acute nonlymphocytic leukemia. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Hamada,et al.  Molecular structure of the human cytoplasmic beta-actin gene: interspecies homology of sequences in the introns. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Nowell,et al.  Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukaemia cell line , 1983, Nature.

[32]  R. Roeder,et al.  Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. , 1983, Nucleic acids research.

[33]  T. Lebien,et al.  A monoclonal antibody (BA-1) reactive with cells of human B lymphocyte lineage. , 1981, Journal of immunology.

[34]  B. Roe,et al.  Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia. , 1997, Genes, chromosomes & cancer.

[35]  L. Chan,et al.  MLL self fusion mediated by Alu repeat homologous recombination and prognosis of AML-M4/M5 subtypes. , 1997, Cancer research.

[36]  A. Look,et al.  Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line. , 1995, Genomics.

[37]  J. Rowley Rearrangements involving chromosome band 11Q23 in acute leukaemia. , 1993, Seminars in cancer biology.

[38]  H. Nakauchi,et al.  Establishment and characterization of a human leukemic cell line with megakaryocytic features: dependency on granulocyte-macrophage colony-stimulating factor, interleukin 3, or erythropoietin for growth and survival. , 1991, Cancer research.