Study-specific EPI template improves group analysis in functional MRI of young and older adults

[1]  R. Cabeza,et al.  Neuroimaging of Healthy Cognitive Aging , 2011 .

[2]  Denise C. Park,et al.  The adaptive brain: aging and neurocognitive scaffolding. , 2009, Annual review of psychology.

[3]  C. Grady Cognitive Neuroscience of Aging , 2008, Annals of the New York Academy of Sciences.

[4]  Tzu Chi Spatial normalization of fMRI results using study-based EPI and T1-weighted brain templates , 2007 .

[5]  Y. Hsu,et al.  Spatial normalization of fMRI results using study-based EPI and T1-weighted brain templates , 2007 .

[6]  Nikolaus Weiskopf,et al.  Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T , 2006, NeuroImage.

[7]  Seiji Ogawa,et al.  EPI image reconstruction with correction of distortion and signal losses , 2006, Journal of magnetic resonance imaging : JMRI.

[8]  Craig M. Bennett,et al.  Anatomical changes in the emerging adult brain: A voxel‐based morphometry study , 2006, Human brain mapping.

[9]  Jason R Tregellas,et al.  A voxel-based morphometry study of gray matter in parents of children with autism , 2006, Neuroreport.

[10]  D. Louis Collins,et al.  Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry , 2006, NeuroImage.

[11]  Takao Kubota,et al.  A region-of-interest template for three-dimensional stereotactic surface projection images: Initial application to the analysis of Alzheimer's disease and mild cognitive impairment , 2006, Nuclear medicine communications.

[12]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[13]  Fred L. Steinberg,et al.  Assessing recovery in middle cerebral artery stroke using functional MRI , 2005, Brain injury.

[14]  Sang Ho Ahn,et al.  Cortical reorganization of hand motor function to primary sensory cortex in hemiparetic patients with a primary motor cortex infarct. , 2005, Archives of physical medicine and rehabilitation.

[15]  Clifford R. Jack,et al.  Comparison of different methodological implementations of voxel-based morphometry in neurodegenerative disease , 2005, NeuroImage.

[16]  J. S. Lee,et al.  Development of Korean Standard Brain Templates , 2005, Journal of Korean medical science.

[17]  Eve C. Johnstone,et al.  Grey matter changes over time in high risk subjects developing schizophrenia , 2005, NeuroImage.

[18]  H. Engeland,et al.  Variability in spatial normalization of pediatric and adult brain images , 2005, Clinical Neurophysiology.

[19]  Angela R Laird,et al.  Coordinate‐based voxel‐wise meta‐analysis: Dividends of spatial normalization. Report of a virtual workshop , 2005, Human brain mapping.

[20]  Kathryn M. McMillan,et al.  N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies , 2005, Human brain mapping.

[21]  N. Raz The Aging Brain Observed in Vivo: Differential Changes and Their Modifiers. , 2005 .

[22]  Kwang Suk Park,et al.  Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[23]  James J. Levitt,et al.  An MRI study of spatial probability brain map differences between first-episode schizophrenia and normal controls , 2004, NeuroImage.

[24]  David I. Perrett,et al.  A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder , 2004, NeuroImage.

[25]  Brian Avants,et al.  Characterization of sexual dimorphism in the human corpus callosum , 2003, NeuroImage.

[26]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.

[27]  Florence Rémy,et al.  Pain modulates cerebral activity during cognitive performance , 2003, NeuroImage.

[28]  R Turner,et al.  Optimized EPI for fMRI studies of the orbitofrontal cortex , 2003, NeuroImage.

[29]  Emma J. Burton,et al.  A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry , 2003, NeuroImage.

[30]  P Kochunov,et al.  Improvement in variability of the horizontal meridian of the primary visual area following high‐resolution spatial normalization , 2003, Human brain mapping.

[31]  Eve C. Johnstone,et al.  Structural Gray Matter Differences between First-Episode Schizophrenics and Normal Controls Using Voxel-Based Morphometry , 2002, NeuroImage.

[32]  Marko Wilke,et al.  Assessment of spatial normalization of whole‐brain magnetic resonance images in children , 2002, Human brain mapping.

[33]  P. Roland,et al.  Comparison of spatial normalization procedures and their impact on functional maps , 2002, Human brain mapping.

[34]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[35]  John Duncan,et al.  Implementation and application of a brain template for multiple volumes of interest , 2002, Human brain mapping.

[36]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[37]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[38]  Karl J. Friston,et al.  Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains , 2001, NeuroImage.

[39]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[40]  T. Naidich,et al.  The parasagittal line: an anatomic landmark for axial imaging. , 2001, AJNR. American journal of neuroradiology.

[41]  A W Toga,et al.  Maps of the Brain , 2001, The Anatomical record.

[42]  T. Schormann,et al.  Hemispheric Shape of European and Japanese Brains: 3-D MRI Analysis of Intersubject Variability, Ethnical, and Gender Differences , 2001, NeuroImage.

[43]  R. Woods,et al.  Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. , 2001, Cerebral cortex.

[44]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[45]  P T Fox,et al.  Brain activation in the processing of Chinese characters and words: A functional MRI study , 2000, Human brain mapping.

[46]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[47]  Alan C. Evans,et al.  Three-Dimensional MRI Atlas of the Human Cerebellum in Proportional Stereotaxic Space , 1999, NeuroImage.

[48]  G H Glover,et al.  3D z‐shim method for reduction of susceptibility effects in BOLD fMRI , 1999, Magnetic resonance in medicine.

[49]  P. Fox,et al.  Global spatial normalization of human brain using convex hulls. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[50]  Stephan Heckers,et al.  A Method for Assessing the Accuracy of Intersubject Registration of the Human Brain Using Anatomic Landmarks , 1999, NeuroImage.

[51]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[52]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[53]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[54]  R T Constable,et al.  Functional MR imaging using gradient‐echo echo‐planar imaging in the presence of large static field inhomogeneities , 1995, Journal of magnetic resonance imaging : JMRI.

[55]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[56]  P. Fox,et al.  Spatial normalization origins: Objectives, applications, and alternatives , 1995 .

[57]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[58]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[59]  K. Zilles,et al.  Human brain atlas: For high‐resolution functional and anatomical mapping , 1994, Human brain mapping.

[60]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[61]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[62]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[64]  F. Craik,et al.  The handbook of aging and cognition , 1992 .

[65]  Karl J. Friston,et al.  Regional cerebral blood flow during voluntary arm and hand movements in human subjects. , 1991, Journal of neurophysiology.

[66]  J. Frahm,et al.  Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation , 1988, Magnetic resonance in medicine.

[67]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.