Uniform error estimates of operational quadrature methods for nonlinear convolution equations on the half-line

We study uniform error estimates of operational quadrature methods for nonlinear convolution equations on the half-line. Equations of this kind arise in control engineering and diffusion problems. The essential ingredients are the stability of the operational quadrature method in an L2 setting, which is inherited from the continuous equation by its very construction, and a theorem that says that the behavior of the linearized equations is the same in all Lp spaces ( I < p < oo ).

[1]  Michael Renardy,et al.  Viscoelasticity and rheology , 1985 .

[2]  I. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element , 1964 .

[3]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[4]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[5]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[6]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[7]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[8]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[9]  P. Eggermont Uniform error estimates of Galerkin methods for monotone Abel-Volterra integral equations on the half-line , 1989 .

[10]  Kumpati S. Narendra,et al.  Stability of nonlinear time-varying feedback systems , 1968, Autom..

[11]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[12]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[13]  R. Ghez,et al.  A Primer of Diffusion Problems , 1988 .

[14]  Helly Fourier transforms in the complex domain , 1936 .

[15]  Ernst Hairer,et al.  Fast numerical solution of weakly singular Volterra integral equations , 1988 .

[16]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[17]  Constantin Corduneanu,et al.  Integral Equations and Stability of Feedback Systems , 1973 .

[18]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[19]  A. Pipkin,et al.  Lectures on Viscoelasticity Theory , 1972 .