Distinctive regions of 3D surfaces

Selecting the most important regions of a surface is useful for shape matching and a variety of applications in computer graphics and geometric modeling. While previous research has analyzed geometric properties of meshes in isolation, we select regions that distinguish a shape from objects of a different type. Our approach to analyzing distinctive regions is based on performing a shape-based search using each region as a query into a database. Distinctive regions of a surface have shape consistent with objects of the same type and different from objects of other types. We demonstrate the utility of detecting distinctive surface regions for shape matching and other graphics applications including mesh visualization, icon generation, and mesh simplification.

[1]  J. Copas Regression, Prediction and Shrinkage , 1983 .

[2]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[3]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[4]  Thomas A. Funkhouser,et al.  Partial matching of 3D shapes with priority-driven search , 2006, SGP '06.

[5]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[6]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[7]  Donald D. Hoffman,et al.  Salience of visual parts , 1997, Cognition.

[8]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[9]  Michael Kazhdan,et al.  SHAPE REPRESENTATIONS AND ALGORITHMS FOR 3D MODEL RETRIEVAL , 2004 .

[10]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[11]  Jitendra Malik,et al.  Shape contexts enable efficient retrieval of similar shapes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Igor Guskov,et al.  Multi-scale features for approximate alignment of point-based surfaces , 2005, SGP '05.

[13]  Andrew E. Johnson,et al.  Surface landmark selection and matching in natural terrain , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[14]  Mateu Sbert,et al.  Viewpoint Selection using Viewpoint Entropy , 2001, VMV.

[15]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[17]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[18]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[19]  Karthik Ramani,et al.  Three-dimensional shape searching: state-of-the-art review and future trends , 2005, Comput. Aided Des..

[20]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[21]  David P. Dobkin,et al.  A search engine for 3D models , 2003, TOGS.

[22]  Joachim Hertzberg,et al.  Saliency-based object recognition in 3D data , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[23]  Martial Hebert,et al.  Efficient multiple model recognition in cluttered 3-D scenes , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[24]  Ron Meir,et al.  Signatures of 3D Models for Retrieval , 2002 .

[25]  BENJAMIN BUSTOS,et al.  Feature-based similarity search in 3D object databases , 2005, CSUR.

[26]  Thomas A. Funkhouser,et al.  Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[27]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[28]  M J Tarr,et al.  What Object Attributes Determine Canonical Views? , 1999, Perception.

[29]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[30]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[31]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[32]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[33]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[34]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[35]  Martial Hebert,et al.  Linear model hashing and batch RANSAC for rapid and accurate object recognition , 2004, CVPR 2004.

[36]  Geoffrey J. McLachlan,et al.  Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog , 2005 .

[37]  Marcel Körtgen,et al.  3D Shape Matching with 3D Shape Contexts , 2003 .

[38]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[39]  T. Funkhouser,et al.  Shape representations and algorithms for three-dimensional model retrieval , 2004 .

[40]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[41]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[42]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[43]  Dejan V. VraniC An improvement of rotation invariant 3D-shape based on functions on concentric spheres , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[44]  Marcos Dipinto,et al.  Discriminant analysis , 2020, Predictive Analytics.

[45]  Carol O'Sullivan,et al.  An experimental approach to predicting saliency for simplified polygonal models , 2004, APGV '04.

[46]  Marcin Novotni,et al.  Correspondence Generation and Matching of 3D Shape Subparts , 2005 .

[47]  Martial Hebert,et al.  Linear model hashing and batch RANSAC for rapid and accurate object recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[48]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.