An accurate two dimensional Markov chain model for IEEE 802.11n DCF

According to the amendment 5 of the IEEE 802.11 standard, 802.11n still uses the distributed coordination function (DCF) access method as mandatory function in access points and wireless stations (essentially to assure compatibility with previous 802.11 versions). This article provides an accurate two dimensional Markov chain model to investigate the throughput performance of IEEE 802.11n networks when frame aggregation and block acknowledgements (Block-ACK) schemes are adopted. Our proposed model considered packet loss either from collisions or channel errors. Further, it took anomalous slots and the freezing of backoff counter into account. The contribution of this work was the analysis of the DCF performance under error-prone channels considering both 802.11n MAC schemes and the anomalous slot in the backoff process. To validate the accuracy of our proposed model, we compared its mathematical simulation results with those obtained using the 802.11n DCF in the network simulator (NS-2) and with other analytical models investigating the performance of 802.11n DCF. Simulation results proved the accuracy of our model.

[1]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[2]  Roger Pierre Fabris Hoefel,et al.  IEEE 802.11n MAC Improvements: A MAC and PHY Cross-Layer Model to Estimate the Throughput , 2008, 2008 IEEE 68th Vehicular Technology Conference.

[3]  Christoph Lindemann,et al.  Analyzing the effective throughput in multi-hop IEEE 802.11n networks , 2011, Comput. Commun..

[4]  Dan Keun Sung,et al.  Effect of Frame Aggregation on the Throughput Performance of IEEE 802.11n , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[5]  Antonella Molinaro,et al.  Toward 5G densenets: architectural advances for effective machine-type communications over femtocells , 2015, IEEE Communications Magazine.

[6]  Thierry Turletti,et al.  Saturation throughput analysis of error-prone 802.11 wireless networks , 2005, Wirel. Commun. Mob. Comput..

[7]  Dharma P. Agrawal,et al.  Optimal packet size in error-prone channel for IEEE 802.11 distributed coordination function , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[8]  Maher Ben Jemaa,et al.  Analytical study of frame aggregation in error-prone channels , 2013, 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC).

[9]  Inkyu Lee,et al.  802.11 WLAN: history and new enabling MIMO techniques for next generation standards , 2015, IEEE Communications Magazine.

[10]  Yousri Daldoul,et al.  IEEE 802.11n aggregation performance study for the multicast , 2011, 2011 IFIP Wireless Days (WD).

[11]  Guillem Femenias,et al.  Modeling fast link adaptation-based 802.11n distributed coordination function , 2014, Telecommun. Syst..

[12]  Katarzyna Kosek-Szott,et al.  A comprehensive analysis of IEEE 802.11 DCF heterogeneous traffic sources , 2014, Ad Hoc Networks.

[13]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[14]  Dariusz R. Kowalski,et al.  Performance Analysis and Algorithm Selection for Reliable Multicast in IEEE 802.11aa Wireless LAN , 2014, IEEE Transactions on Vehicular Technology.

[15]  Vincent W. S. Wong,et al.  WSN01-1: Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11n WLANs , 2006, IEEE Globecom 2006.

[16]  Periklis Chatzimisios,et al.  Performance analysis of IEEE 802.11 DCF in presence of transmission errors , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[17]  Pravin Varaiya,et al.  Saturation throughput analysis of IEEE 802.11 wireless LANs for a lossy channel , 2005, IEEE Communications Letters.

[18]  Senthilkumar Dhanasekaran,et al.  Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment , 2010, Int. J. Autom. Comput..

[19]  Olav N. Østerbø,et al.  Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction , 2005, MSWiM '05.

[20]  Ashok K. Agrawala,et al.  IEEE 802.11 DCF enhancements for noisy environments , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[21]  Kee Chaing Chua,et al.  A Capacity Analysis for the IEEE 802.11 MAC Protocol , 2001, Wirel. Networks.

[22]  Djamil Aïssani,et al.  Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions , 2014, Wirel. Networks.

[23]  Kai-Ten Feng,et al.  Performance analysis of greedy fast-shift block acknowledgement for high-throughput WLANs , 2014, Wirel. Networks.

[24]  Thierry Turletti,et al.  Saturation throughput analysis of error-prone 802.11 wireless networks: Research Articles , 2005 .

[25]  Luc Martens,et al.  Path loss model and prediction of range, power and throughput for 802.11n in large conference rooms , 2012 .

[26]  P. Venkata Krishna,et al.  Analysis of a refined model for the IEEE 802.11 distributed coordination function , 2013, Int. J. Commun. Networks Distributed Syst..

[27]  Hongyuan Chen,et al.  Revisit of the Markov Model of IEEE 802.11 DCF for an Error-Prone Channel , 2011, IEEE Communications Letters.

[28]  Shahabuddin Muhammad,et al.  Modeling and Analyzing MAC Frame Aggregation Techniques in 802.11n Using Bi-dimensional Markovian Model , 2012, NDT.

[29]  David Malone,et al.  Aggregation with fragment retransmission for very high-speed WLANs , 2009, TNET.

[30]  Yang Xiao,et al.  Refinements on IEEE 802.11 Distributed Coordination Function Modeling Approaches , 2010, IEEE Transactions on Vehicular Technology.