Mass Transfer in Concentrated Binary Electrolytes

The macroscopic description of multicomponent diffusion serves as a basis for the development of equations in a useful form for electrochemical transport problems. A method is proposed for predicting the concentration dependence of the resulting transport parameters. Die makroskopische Beschreibung der Mehrkomponentendiffusion dient als Ausgangspunkt fur die Aufstellung von Gleichungen, die auf elektrochemische Transportprobleme angewandt werden konnen. Es wird ein Verfahren vorgeschlagen, nach dem die Konzentrationsabhangigkeit der in diesen Gleichungen auftretenden Transportparameter vorhergesagt werden kann.

[1]  E. A. Guggenheim The Conceptions of Electrical Potential Difference between Two Phases and the Individual Activities of Ions , 1928 .

[2]  E. A. Guggenheim On the Conception of Electrical Potential Difference between two Phases. II , 1929 .

[3]  M. Dole,et al.  THE TRANSFERENCE NUMBERS OF POTASSIUM CHLORIDE. NEW DETERMINATIONS BY THE HITTORF METHOD AND A COMPARISON WITH RESULTS OBTAINED BY THE MOVING BOUNDARY METHOD , 1931 .

[4]  L. G. Longsworth,et al.  Transference Numbers by the Method of Moving Boundaries. , 1932 .

[5]  Grinnell. Jones,et al.  The Viscosity of Aqueous Solutions as a Function of the Concentration , 1933 .

[6]  Grinnell. Jones,et al.  The Viscosity of Aqueous Solutions as a Function of the Concentration. II. Potassium Bromide and Potassium Chloride , 1933 .

[7]  L. B. Hitchcock,et al.  Viscosity and Density of Pure Alkaline Solutions and Their Mixtures , 1935 .

[8]  E. A. Guggenheim LXXXIII. On the meaning of diffusion potential , 1936 .

[9]  L. Nickels,et al.  The Electrical Conductivities and Viscosities at 25°C. of Solutions of Potassium, Sodium, and Lithium Chlorides, in Water and in One-tenth Molar Hydrochloric Acid. , 1937 .

[10]  L. Darken,et al.  Conductances of Aqueous Solutions of the Hydroxides of Lithium, Sodium and Potassium at 25° , 1942 .

[11]  H. E. Gunning,et al.  The Conductance and Ionic Mobilities for Aqueous Solutions of Potassium and Sodium Chloride at Temperatures from 15° to 45°C , 1942 .

[12]  L. Onsager,et al.  THEORIES AND PROBLEMS OF LIQUID DIFFUSION , 1945, Annals of the New York Academy of Sciences.

[13]  H. S. Harned,et al.  THE DIFFUSION COEFFICIENT OF POTASSIUM CHLORIDE IN AQUEOUS SOLUTION AT 25°C. , 1949 .

[14]  L. J. Gosting A Study of the Diffusion of Potassium Chloride in Water at 25° with the Gouy Interference Method , 1950 .

[15]  H. Zeldes,et al.  The Conductance of Potassium Chloride, Potassium Bromide and Potassium Iodide in Aqueous Solutions from 5 to 55° , 1950 .

[16]  C. A. Kraus,et al.  Properties of Electrolytic Solutions. XLVII. Conductance of Some Quaternary Ammonium and Other Salts in Water at Low Concentration1 , 1951 .

[17]  R. Laity An Application of Irreversible Thermodynamics to the Study of Diffusion , 1959 .

[18]  R. Laity General Approach to the Study of Electrical Conductance and Its Relation to Mass Transport Phenomena , 1959 .

[19]  Mitsuru Tanaka,et al.  Studies on the Concentrated Solutions of Electrolyte: Viscosity , 1960 .

[20]  Clifford Ambrose Truesdell,et al.  Mechanical Basis of Diffusion , 1962 .

[21]  Edward L Cussler,et al.  Applicability of the Stefan‐Maxwell equations to multicomponent diffusion in liquids , 1962 .