Reanalysis Profile Downscaling with WRF Model and Sensitivity to PBL Parameterization Schemes Over a Subtropical Station

Abstract Atmospheric profiles are essential in weather prediction, atmospheric research, and satellite data calibration. In this study, we assess the use of the Weather Research and Forecasting (WRF) model to downscaling NCEP Climate Forecast System Version 2 (CFSv2) reanalysis atmospheric profiles. Moreover, a sensitivity analysis was conducted to Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) Planetary Boundary Layer (PBL) parameterization schemes. WRF simulations were carried out using two nested grids with horizontal resolutions of 12 and 3 km. Simulated profiles were evaluated against radiosonde observations in Southern Brazil. Results indicate that WRF can skillfully simulate vertical profiles of water vapor mixing ratio (q) and potential temperature (θ). The entire profile comparison yielded high correlation coefficients (mostly higher than 0.9), low moist and cold average biases, and overall RMSE (MAE) of 0.84 (0.44) g/Kg and 2.30 (1.61) K for q and θ, respectively. In the lower troposphere (0–3 km), errors are larger for q and lower for θ. Statistically, there is no significant difference in the retrieved profiles on increasing the horizontal resolution. The setting choice is a compromise between spatial detail needs and computational cost. Furthermore, the overall results did not indicate any particular PBL scheme that stands out in all case days. The performance depends on the meteorological conditions that prevail in the different cases. The WRF model and even data directly from NCEP CFSv2 reanalysis are useful to represent the vertical structure of the atmosphere when local radiosondes are not available.

[1]  Nájila Souza da Rocha,et al.  Using the WRF Model to Refine NCEP CFSv2 Reanalysis Atmospheric Profile: A Southern Brazil Test Case , 2020 .

[2]  José A. Sobrino,et al.  The Influence of Land Surface Temperature in Evapotranspiration Estimated by the S-SEBI Model , 2020, Atmosphere.

[3]  P. Jackson,et al.  Meteorological Downscaling with WRF Model, Version 4.0, and Comparative Evaluation of Planetary Boundary Layer Schemes over a Complex Coastal Airshed , 2020, Journal of Applied Meteorology and Climatology.

[4]  Q. Vanhellemont Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS , 2020 .

[5]  Xiaoye Zhang,et al.  The role of the planetary boundary layer parameterization schemes on the meteorological and aerosol pollution simulations: A review , 2020 .

[6]  Silvia Beatriz Alves Rolim,et al.  Artificial neural networks model based on remote sensing to retrieve evapotranspiration over the Brazilian Pampa , 2020, Journal of Applied Remote Sensing.

[7]  Guiping Feng,et al.  Improvement of precipitable water vapour and water vapour mixing ratio profile in atmospheric infrared sounder retrievals: differential linear adjustment model , 2020 .

[8]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[9]  S. Sherwood,et al.  Using Megha‐Tropiques satellite data to constrain humidity in regional convective simulations: A northern Australian test case , 2020, Quarterly Journal of the Royal Meteorological Society.

[10]  A. Alghamdi Evaluation of Four Reanalysis Datasets against Radiosonde over Southwest Asia , 2020, Atmosphere.

[11]  T. Vihma,et al.  Impact of Assimilation of Radiosonde and UAV Observations from the Southern Ocean in the Polar WRF Model , 2020, Advances in Atmospheric Sciences.

[12]  A. Sekertekin,et al.  Pre-seismic ionospheric anomalies and spatio-temporal analyses of MODIS Land surface temperature and aerosols associated with Sep, 24 2013 Pakistan Earthquake , 2020 .

[13]  Libo Zhou,et al.  Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet , 2020 .

[14]  Shailendra Kumar,et al.  Influence of PBL parameterization schemes in WRF_ARW model on short - range precipitation's forecasts in the complex orography of Peruvian Central Andes , 2020 .

[15]  Sibo Duan,et al.  Evaluation of Seven Atmospheric Profiles from Reanalysis and Satellite-Derived Products: Implication for Single-Channel Land Surface Temperature Retrieval , 2020, Remote. Sens..

[16]  P. Di Girolamo,et al.  Temperature and water vapour measurements in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC) , 2020 .

[17]  Yuxin Zhao,et al.  Linear correction method for improved atmospheric vertical profile retrieval based on ground-based microwave radiometer , 2020 .

[18]  Q. Vanhellemont Automated water surface temperature retrieval from Landsat 8/TIRS , 2020 .

[19]  Marc Lemus-Canovas,et al.  Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. , 2020, The Science of the total environment.

[20]  A. Sekertekin,et al.  Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using Landsat 8 Satellite Imagery and SURFRAD in-situ Measurements , 2019 .

[21]  C. Mattar,et al.  Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile , 2019 .

[22]  G. Bharathi,et al.  Validating INSAT-3D atmospheric temperature retrievals over india using radiosonde measurements and other satellite observations , 2019, Meteorology and Atmospheric Physics.

[23]  M. Rahimzadegan,et al.  Investigating extracted total precipitable water vapor from Weather Research and Forecasting (WRF) model and MODIS measurements , 2019, Journal of Atmospheric and Solar-Terrestrial Physics.

[24]  Fuqing Zhang,et al.  How Accurate Are Modern Atmospheric Reanalyses for the Data-Sparse Tibetan Plateau Region? , 2019, Journal of Climate.

[25]  T. Vihma,et al.  The Impact of Radiosounding Observations on Numerical Weather Prediction Analyses in the Arctic , 2019, Geophysical Research Letters.

[26]  T. Zhou,et al.  Evaluation of Satellite and Reanalysis Precipitable Water Vapor Data Sets Against Radiosonde Observations in Central Asia , 2019, Earth and Space Science.

[27]  Robert M. Graham,et al.  Evaluation of Six Atmospheric Reanalyses over Arctic Sea Ice from Winter to Early Summer , 2019, Journal of Climate.

[28]  Bo-Hui Tang,et al.  Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product , 2019 .

[29]  A. Steiner,et al.  Comparing turbulent mixing of atmospheric oxidants across model scales , 2019, Atmospheric Environment.

[30]  Massimo Menenti,et al.  Relating Spatiotemporal Patterns of Forest Fires Burned Area and Duration to Diurnal Land Surface Temperature Anomalies , 2018, Remote. Sens..

[31]  V. Magliulo,et al.  Performance Analysis of Planetary Boundary Layer Parameterization Schemes in WRF Modeling Set Up over Southern Italy , 2018, Atmosphere.

[32]  Jie Cheng,et al.  Evaluating Eight Global Reanalysis Products for Atmospheric Correction of Thermal Infrared Sensor - Application to Landsat 8 TIRS10 Data , 2018, Remote. Sens..

[33]  Kun Yang,et al.  Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau , 2018, Climate Dynamics.

[34]  A. Mohamed,et al.  Evaluation of the WRF model on simulating the vertical structure and diurnal cycle of the atmospheric boundary layer over Bordj Badji Mokhtar (southwestern Algeria) , 2017, Journal of King Saud University - Science.

[35]  D. Brus,et al.  Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model , 2017 .

[36]  Jorge Rosas,et al.  Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems , 2017, Remote. Sens..

[37]  Jordan G. Powers,et al.  The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions , 2017 .

[38]  John P. Fulton,et al.  An overview of current and potential applications of thermal remote sensing in precision agriculture , 2017, Comput. Electron. Agric..

[39]  Zhiyong Wu,et al.  High-Resolution Dynamical Downscaling of Seasonal Precipitation Forecasts for the Hanjiang Basin in China Using the Weather Research and Forecasting Model , 2017 .

[40]  Marouane Temimi,et al.  Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region , 2017 .

[41]  J. Cogan Evaluation of model‐generated vertical profiles of meteorological variables: method and initial results , 2017 .

[42]  Menghan Yuan,et al.  Evaluation of Five Grid Datasets against Radiosonde Data over the Eastern and Downstream Regions of the Tibetan Plateau in Summer , 2017 .

[43]  David M. Siuta,et al.  WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain , 2017 .

[44]  C. Srinivas,et al.  Performance of WRF in simulating terrain induced flows and atmospheric boundary layer characteristics over the tropical station Gadanki , 2017 .

[45]  Zhizhao Liu,et al.  Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite , 2016 .

[46]  Olivier Hagolle,et al.  A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data , 2016, Remote. Sens..

[47]  Francesc Rocadenbosch,et al.  Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign , 2016 .

[48]  Matthew A. Lazzara,et al.  Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica , 2016 .

[49]  R. Stull Practical Meteorology: An Algebra-based Survey of Atmospheric Science , 2016 .

[50]  Manju Mohan,et al.  WRF model performance analysis for a suite of simulation design , 2016 .

[51]  Fabio Del Frate,et al.  Review of Thermal Infrared Applications and Requirements for Future High-Resolution Sensors , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Wengang Zhang,et al.  Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings , 2015 .

[53]  Juan C. Jiménez-Muñoz,et al.  Evaluation of Terra/MODIS atmospheric profiles product (MOD07) over the Iberian Peninsula: a comparison with radiosonde stations , 2015, Int. J. Digit. Earth.

[54]  B. Codina,et al.  Forecasting the precipitable water vapour content: validation for astronomical observatories using radiosoundings , 2015 .

[55]  H. Kunstmann,et al.  Toward a seasonal precipitation prediction system for West Africa: Performance of CFSv2 and high‐resolution dynamical downscaling , 2015 .

[56]  Vicente García-Santos,et al.  Comparing different profiles to characterize the atmosphere for three MODIS TIR bands , 2015 .

[57]  Ariel E. Cohen,et al.  A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments , 2015 .

[58]  B. Rappenglück,et al.  Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentration in the WRF/Chem model for a case study in Houston/Texas , 2014 .

[59]  K. Hariprasad,et al.  Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site , 2014 .

[60]  Huiling Qin,et al.  Evaluation of the Warm-Season Diurnal Variability over East Asia in Recent Reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA , 2014 .

[61]  T. Chai,et al.  Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature , 2014 .

[62]  A. Satyanarayana,et al.  Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility — Case study , 2014 .

[63]  M. Iredell,et al.  The NCEP Climate Forecast System Version 2 , 2014 .

[64]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[65]  Dawei Han,et al.  Data Fusion Techniques for Improving Soil Moisture Deficit Using SMOS Satellite and WRF-NOAH Land Surface Model , 2013, Water Resources Management.

[66]  J. Fung,et al.  Structure of the planetary boundary layer over Southeast England: Modeling and measurements , 2013 .

[67]  Eric F. Wood,et al.  Validation of AIRS/AMSU‐A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N–67°S , 2013 .

[68]  James Correia,et al.  Verification of Convection-Allowing WRF Model Forecasts of the Planetary Boundary Layer Using Sounding Observations , 2013 .

[69]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[70]  Hua Li,et al.  Evaluation of the NCEP and MODIS Atmospheric Products for Single Channel Land Surface Temperature Retrieval With Ground Measurements: A Case Study of HJ-1B IRS Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[71]  Fuqing Zhang,et al.  Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau , 2013 .

[72]  Y. Kuo,et al.  Two overlooked biases of the Advanced Research WRF (ARW) Model in geopotential height and temperature , 2012 .

[73]  J. Evans,et al.  Evaluating the performance of a WRF physics ensemble over South-East Australia , 2012, Climate Dynamics.

[74]  Alexis K.H. Lau,et al.  Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model , 2012 .

[75]  David D. Turner,et al.  Toward understanding of differences in current cloud retrievals of ARM ground‐based measurements , 2012 .

[76]  Xubin Zeng,et al.  Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau , 2012 .

[77]  J. Dudhia,et al.  A Revised Scheme for the WRF Surface Layer Formulation , 2012 .

[78]  V. Caselles,et al.  Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data , 2012 .

[79]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[80]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[81]  Rowan Fealy,et al.  Comparison of ERA‐40, ERA‐Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland , 2011 .

[82]  Song-You Hong,et al.  Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99 , 2011 .

[83]  Juan C. Jiménez-Muñoz,et al.  Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products , 2010 .

[84]  Fuqing Zhang,et al.  Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model , 2010 .

[85]  Celeste Saulo,et al.  WRF Model Sensitivity to Choice of Parameterization over South America: Validation against Surface Variables , 2010 .

[86]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[87]  Tammy M. Weckwerth,et al.  Tropospheric water vapor, convection, and climate , 2010 .

[88]  James G. Yoe,et al.  The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States , 2008 .

[89]  Jason C. Knievel,et al.  Explicit Numerical Diffusion in the WRF Model , 2007 .

[90]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[91]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[92]  P. O. Hulth,et al.  Optical properties of deep glacial ice at the South Pole , 2006 .

[93]  Christopher D. Barnet,et al.  Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts , 2006 .

[94]  C. Willmott,et al.  Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance , 2005 .

[95]  John R. Christy,et al.  UNCERTAINTIES IN CLIMATE TRENDS Lessons from Upper-Air Temperature Records , 2005 .

[96]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[97]  Jan-Peter Muller,et al.  Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate‐Resolution Imaging Spectroradiometer measurements , 2003 .

[98]  Julia A. Barsi,et al.  An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[99]  S. Avery,et al.  A Comparison of VHF Wind Profiler Observations and the NCEP–NCAR Reanalysis over the Tropical Pacific , 2003 .

[100]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[101]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[102]  Shu‐Hua Chen,et al.  A One-dimensional Time Dependent Cloud Model , 2002 .

[103]  Hideyuki Tonooka,et al.  An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor scaling method , 2001, IEEE Trans. Geosci. Remote. Sens..

[104]  David D. Turner,et al.  Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors , 2000 .

[105]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[106]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[107]  J. Garratt,et al.  Review: the atmospheric boundary layer , 1994 .

[108]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[109]  José A. Sobrino,et al.  Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5 , 1991 .

[110]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[111]  Sethu Raman,et al.  A review and comparative evaluation of multilevel boundary layer parameterizations for first‐order and turbulent kinetic energy closure schemes , 1988 .

[112]  Morley K. Thomas A brief history of meteorological services in Canada part 1: 1839–1930 , 1971 .

[113]  R. Garland,et al.  Sensitivity of meteorological variables on planetary boundary layer parameterization schemes in the WRF-ARW model , 2021 .

[114]  Jimy Dudhia,et al.  A Description of the Advanced Research WRF Model Version 4 , 2019 .

[115]  Chung-Pai Chang,et al.  Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan , 2017, Pure and Applied Geophysics.

[116]  I. Kioutsioukis,et al.  High resolution WRF ensemble forecasting for irrigation: Multi-variable evaluation , 2016 .

[117]  A. Satyanarayana,et al.  Sensitivity of PBL schemes of the WRF-ARW model in simulating the boundary layer flow parameters for its application to air pollution dispersion modeling over a tropical station , 2016 .

[118]  E. Nascimento,et al.  Numerical Simulations of the South American Low Level Jet in Two Episodes of MCSs: Sensitivity to PBL and Convective Parameterization Schemes , 2016 .

[119]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[120]  L. Fita,et al.  Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe , 2013 .

[121]  D. Wilks Chapter 9 - Time Series , 2011 .

[122]  D. Stensrud Parameterization Schemes: Soil–vegetation–atmosphere parameterizations , 2007 .

[123]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .