Reconstructed stacking faults in cobalt-doped hexagonal LuFeO3 revealed by mapping of cation distribution at the atomic scale

The structure of an epitaxial thin film of cobalt-doped hexagonal LuFeO3 was studied by aberration-corrected high-resolution scanning transmission electron microscopy. The distribution maps of the chemical elements in the film were obtained using atomically resolved energy-dispersive X-ray spectroscopy. The study showed that cobalt ions have a strong tendency towards forming double layers of (Fe/Co)O2.5 between the Lu–O layers in a hexagonal structure. A significantly smaller amount of cobalt is found in single layers of FeO1.5, suggesting the presence of a trigonal-bipyramidal coordination of cobalt. The hexagonal LuFeO3 structure contains numerous reconstructed stacking faults that represent intergrown structural fragments of LuFe2 − xCoxO4. Magnetization measurements revealed a decrease in the magnetic transition temperature of the LuFe0.7Co0.3O3 thin film compared to those of the parent hexagonal LuFeO3 and LuFe2 − xCoxO4 forms.

[1]  A. Akbashev,et al.  Structural and chemical aspects of the design of multiferroic materials , 2011 .

[2]  N. Perov,et al.  Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb) , 2011 .

[3]  H. Inoue,et al.  Noncentrosymmetric Structure of LuFeO3 in Metastable State , 2010 .

[4]  H. Tabata,et al.  Growth of epitaxial TmFeCuO4 thin films by pulsed laser deposition , 2010 .

[5]  Leslie J. Allen,et al.  Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy , 2010 .

[6]  K. Asokan,et al.  Effect of Co, Ni, and Cu substitution on the electronic structure of hexagonal YMnO3 studied by x-ray absorption spectroscopy , 2009 .

[7]  Y. Yoneda,et al.  Magnetic and dielectric properties of YbFe2−xMnxO4 (0⩽x⩽1) , 2009 .

[8]  S. Ishiwata,et al.  High pressure synthesis and structure of a new magnetoplumbite-type cobalt oxide SrCo12O19 , 2008 .

[9]  Junping Li,et al.  Structure, charge ordering and physical properties of LuFe{sub 2}O{sub 4} , 2007 .

[10]  S. Mori,et al.  Magnetic and dielectric properties of RFe2O4, RFeMO4, and RGaCuO4 (R=Yb and Lu, M=Co and Cu) , 2007 .

[11]  J. Attfield,et al.  Neutron diffraction study of a layered cobalt oxide SrCo6O11 , 2007 .

[12]  H. Zandbergen,et al.  XRD and HREM Studies of Epitaxially Stabilized Hexagonal Orthoferrites RFeO3 (R = Eu−Lu) , 2004 .

[13]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[14]  M. Fiebig,et al.  Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3 , 2003 .

[15]  T. Palstra,et al.  Hexagonal LuMnO3 revisited , 2001 .

[16]  H. Takagi,et al.  Dielectric and magnetic anomalies and spin frustration in hexagonal R MnO 3 ( R = Y , Yb, and Lu) , 2001 .

[17]  S. Takekawa,et al.  Structures of LuFeCoO4 and LuFe2O4 , 1990 .

[18]  S. Takekawa,et al.  Single crystal growth of LuFe2O4, LuFeCoO4 and YbFeMgO4 by the floating zone method , 1990 .

[19]  Noboru Kimizuka,et al.  Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3A2O3BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000°C , 1985 .

[20]  J. Jeffries,et al.  The crystal structure of a new high-temperature modification of YGaO3 , 1975 .

[21]  H. Yakel,et al.  On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium , 1963 .

[22]  J. Tartaj,et al.  Crystalline structure of the manganites solid solution RE(Me,Mn)O3, (RE=Gd,Er; Me=Ni,Co) , 2009 .

[23]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[24]  H. Takagi,et al.  Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping , 2002 .

[25]  G. Kruger,et al.  Stability and structure of noncentrosymmetric hexagonal LnInO3 (Ln = Eu, Gd, Tb, Dy, Ho, Y) , 1976 .