Uniformly counting points of bounded height
暂无分享,去创建一个
[1] D. Bertrand,et al. Duality on tori and multiplicative dependence relations , 1997, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[2] D. Masser. Counting points of small height on elliptic curves , 1989 .
[3] W. Schmidt. Northcott's theorem on heights II. The quadratic case , 1995 .
[4] L. Kronecker,et al. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. , 1857 .
[5] Thomas Ransford,et al. Potential Theory in the Complex Plane: Bibliography , 1995 .
[6] Jan-Hendrik Evertse,et al. On equations inS-units and the Thue-Mahler equation , 1984 .
[7] Wolfgang M. Schmidt,et al. Diophantine Approximations and Diophantine Equations , 1991 .
[8] S. Lang. Algebraic Number Theory , 1971 .
[9] D. Northcott. An inequality in the theory of arithmetic on algebraic varieties , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] F. Amoroso,et al. Le problème de Lehmer en dimension supérieure , 1999 .
[11] E. Matveev,et al. On Linear and Multiplicative Relations , 1994 .
[12] A. Odlyzko. Some analytic estimates of class numbers and discriminants , 1975 .
[13] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[14] E. Matveev,et al. An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .
[15] Stephen Hoel Schanuel. Heights in number fields , 1979 .
[16] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[17] L. Tóth. Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .
[18] C. A. Rogers. The product ofn real homogeneous linear forms , 1950 .
[19] H. Mulholland. On the Product of n Complex Homogeneous Linear Forms , 1960 .
[20] Stephanie Kleven. Counting points of bounded height on del Pezzosurfaces , 2006 .
[21] Michel Waldschmidt,et al. Diophantine Approximation on Linear Algebraic Groups , 2000 .
[22] Paul Voutier,et al. An effective lower bound for the height of algebraic numbers , 2012, 1211.3110.
[23] W. Schmidt. Northcott's theorem on heights I. A general estimate , 1993 .
[24] E. Matveev. On the successive minima of the extended logarithmic height of algebraic numbers , 1999 .
[25] H. F. Blichfeldt. Note on the minimum value of the discriminant of an algebraic field , 1939 .
[26] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .