Uniformly counting points of bounded height

1. Introduction. In this paper we give some new uniform estimates for the cardinalities of certain sets involving algebraic numbers of bounded height. The estimates are nearly optimal with respect to the degree of the number eld. We mention some applications to problems about multiplicatively independent and dependent numbers in situations occurring in the recent theory of linear forms in logarithms associated with the name of Matveev. We also extend our counting estimates to algebraic vectors. Let K be a number eld of degree d = [K :Q] over the rational eld Q. We use the absolute height function dened for in K by

[1]  D. Bertrand,et al.  Duality on tori and multiplicative dependence relations , 1997, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[2]  D. Masser Counting points of small height on elliptic curves , 1989 .

[3]  W. Schmidt Northcott's theorem on heights II. The quadratic case , 1995 .

[4]  L. Kronecker,et al.  Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. , 1857 .

[5]  Thomas Ransford,et al.  Potential Theory in the Complex Plane: Bibliography , 1995 .

[6]  Jan-Hendrik Evertse,et al.  On equations inS-units and the Thue-Mahler equation , 1984 .

[7]  Wolfgang M. Schmidt,et al.  Diophantine Approximations and Diophantine Equations , 1991 .

[8]  S. Lang Algebraic Number Theory , 1971 .

[9]  D. Northcott An inequality in the theory of arithmetic on algebraic varieties , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  F. Amoroso,et al.  Le problème de Lehmer en dimension supérieure , 1999 .

[11]  E. Matveev,et al.  On Linear and Multiplicative Relations , 1994 .

[12]  A. Odlyzko Some analytic estimates of class numbers and discriminants , 1975 .

[13]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[14]  E. Matveev,et al.  An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers , 1998 .

[15]  Stephen Hoel Schanuel Heights in number fields , 1979 .

[16]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[17]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[18]  C. A. Rogers The product ofn real homogeneous linear forms , 1950 .

[19]  H. Mulholland On the Product of n Complex Homogeneous Linear Forms , 1960 .

[20]  Stephanie Kleven Counting points of bounded height on del Pezzosurfaces , 2006 .

[21]  Michel Waldschmidt,et al.  Diophantine Approximation on Linear Algebraic Groups , 2000 .

[22]  Paul Voutier,et al.  An effective lower bound for the height of algebraic numbers , 2012, 1211.3110.

[23]  W. Schmidt Northcott's theorem on heights I. A general estimate , 1993 .

[24]  E. Matveev On the successive minima of the extended logarithmic height of algebraic numbers , 1999 .

[25]  H. F. Blichfeldt Note on the minimum value of the discriminant of an algebraic field , 1939 .

[26]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .