Mercury Inhibits the Activity of the NADPH:Protochlorophyllide Oxidoreductase (POR)

[1]  D. Barltrop,et al.  Mercury binding to human haemoglobin , 1973, Experientia.

[2]  F. Šeršeň,et al.  New Facts about CdCl2 Action on the Photosynthetic Apparatus of Spinach Chloroplasts and Its Comparison with HgCl2 Action , 2001, Photosynthetica.

[3]  Samuel I. Beale,et al.  Enzymes of chlorophyll biosynthesis , 1999, Photosynthesis Research.

[4]  B. Böddi,et al.  Protochlorophyllide forms and energy transfer in dark-grown wheat leaves. Studies by conventional and laser excited fluorescence spectroscopy between 10 K–100 K , 1999, Photosynthesis Research.

[5]  B. Böddi,et al.  Protochlorophyllide-NADP+ and protochlorophyllide- NADPH complexes and their regeneration after flash illumination in leaves and etioplast membranes of dark-grown wheat , 2004, Photosynthesis Research.

[6]  H. Ohta,et al.  Identification and light‐induced expression of a novel gene of NADPH‐protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana , 2000, FEBS letters.

[7]  Sundqvist,et al.  The two spectroscopically different short wavelength protochlorophyllide forms in pea epicotyls are both monomeric. , 1998, Biochimica et biophysica acta.

[8]  Y. Fujita,et al.  Protochlorophyllide reduction: a key step in the greening of plants. , 1996, Plant & cell physiology.

[9]  B. Böddi,et al.  Protochlorophyllide transformations and chlorophyll accumulation in epicotyls of pea (Pisum sativum) , 1996 .

[10]  W. Schäfer,et al.  ABSOLUTE CONFIGURATION OF PROTOCHLOROPHYLLIDE ALPHA AND SUBSTRATE SPECIFICITY OF NADPH-PROTOCHLOROPHYLLIDE OXIDOREDUCTASE , 1996 .

[11]  K. Apel,et al.  Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Böddi,et al.  Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat , 1995 .

[13]  B. Böddi,et al.  Analysis of the 77 K fluorescence emission and excitation spectra of isolated etioplast inner membranes , 1993 .

[14]  G. Teakle,et al.  Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). , 1993, The Biochemical journal.

[15]  B. Bereza,et al.  Spectroscopic characterization of protochlorophyllide and its transformation , 1993 .

[16]  B. Böddi,et al.  Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra , 1992 .

[17]  A. Powell,et al.  Synthesis and structure of [Hg(SC6H2But3)2(py)]: A T-shaped complex of mercury , 1992 .

[18]  C. Sundqvist,et al.  THE FORMATION OF A SHORT‐WAVELENGTH CHLOROPHYLLIDE FORM AT PARTIAL PHOTOTRANSFORMATION OF PROTOCHLOROPHYLLIDE IN ETIOPLAST INNER MEMBRANES * , 1991 .

[19]  S. Kay,et al.  Cloning and sequencing of protochlorophyllide reductase. , 1990, The Biochemical journal.

[20]  B. Böddi,et al.  On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts , 1989 .

[21]  T. Begley,et al.  Protochlorophyllide reductase. 1. Determination of the regiochemistry and the stereochemistry of the reduction of protochlorophyllide to chlorophyllide , 1989 .

[22]  A. Wessler,et al.  Synthesis of 4R- and 4S-tritium labeled NADPH for the determination of the coenzyme stereospecificity of NADPH: protochlorophyllide oxidoreductase. , 1987, Biochemical and biophysical research communications.

[23]  A. Fairlamb,et al.  Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases. , 1986, Biochemistry.

[24]  A. Summers Organization, expression, and evolution of genes for mercury resistance. , 1986, Annual review of microbiology.

[25]  Y. Inoue,et al.  Light-driven reversible transformation of chlorophyllide P696,684 into chlorophyllide P688,678 in illuminated etiolated bean leaves , 1984 .

[26]  T. Foster Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. , 1983, Microbiological reviews.

[27]  C. Walsh,et al.  Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide. , 1983, Biochemistry.

[28]  C. Sundqvist,et al.  Characterization of prolamellar bodies and prothylakoids fractionated from wheat etioplasts , 1982 .

[29]  R. Oliver,et al.  Pigment-protein complexes of illuminated etiolated leaves. , 1982, Plant physiology.

[30]  P. Mathis,et al.  A SHORT‐LIVED INTERMEDIATE IN THE PHOTO‐ENZYMATIC REDUCTION OF PROTOCHLOROPHYLL(IDE) INTO CHLOROPHYLL(IDE) AT A PHYSIOLOGICAL TEMPERATURE , 1980 .

[31]  B. Sarkar,et al.  Inorganic mercury(II)-binding components in normal human blood serum. , 1979, Journal of toxicology and environmental health.

[32]  W. Griffiths Reconstitution of chlorophyllide formation by isolated etioplast membranes. , 1978, The Biochemical journal.