Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko

Before Rosetta, the space missions Giotto and Stardust shaped our view on cometary dust, supported by plentiful data from Earth based observations and interplanetary dust particles collected in the Earth’s atmosphere. The Rosetta mission at comet 67P/Churyumov-Gerasimenko was equipped with a multitude of instruments designed to study cometary dust. While an abundant amount of data was presented in several individual papers, many focused on a dedicated measurement or topic. Different instruments, methods, and data sources provide different measurement parameters and potentially introduce different biases. This can be an advantage if the complementary aspect of such a complex data set can be exploited. However, it also poses a challenge in the comparison of results in the first place. The aim of this work therefore is to summarize dust results from Rosetta and before. We establish a simple classification as a common framework for intercomparison. This classification is based on the dust particle structure, porosity, and strength and also on its size. Depending on the instrumentation, these are not direct measurement parameters, but we chose them because they were the most reliable for deriving our model. The proposed classification has proved helpful in the Rosetta dust community, and we offer it here also for a broader context. In this manner, we hope to better identify synergies between different instruments and methods in the future.

[1]  P. Ehrenfreund,et al.  Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometer scale , 2019, Astronomy & Astrophysics.

[2]  K. Muinonen,et al.  Interpretation of the Phase Functions Measured by the OSIRIS Instrument for Comet 67P/Churyumov–Gerasimenko , 2018, The Astrophysical Journal.

[3]  S. Debei,et al.  The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  S. Debei,et al.  Models of Rosetta/OSIRIS 67P Dust Coma Phase Function , 2018, The Astronomical Journal.

[5]  E. Palomba,et al.  Summer outbursts in the coma of comet 67P/Churyumov–Gerasimenko as observed by Rosetta–VIRTIS , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  S. Gorb,et al.  Sintering and sublimation of micrometre-sized water-ice particles: the formation of surface crusts on icy Solar System bodies , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  K. Schmidt,et al.  The tensile strength of ice and dust aggregates and its dependence on particle properties , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  S. Debei,et al.  The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko , 2018 .

[9]  K. Seidensticker,et al.  Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material , 2018 .

[10]  S. Debei,et al.  Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs (Corrigendum) , 2017, Astronomy & Astrophysics.

[11]  S. Erard,et al.  Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations , 2017, 1708.00210.

[12]  J. Blum,et al.  Fractal dust constrains the collisional history of comets , 2017 .

[13]  S. Green,et al.  The dust-to-ices ratio in comets and Kuiper belt objects , 2017 .

[14]  Y. Langevin,et al.  Optical properties of cometary particles collected by the COSIMA mass spectrometer on-board Rosetta during the rendezvous phase around comet 67P/Churyumov–Gerasimenko , 2017 .

[15]  S. Debei,et al.  Characterization of dust aggregates in the vicinity of the Rosetta spacecraft , 2017 .

[16]  S. Debei,et al.  The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument , 2017 .

[17]  S. Debei,et al.  Post-perihelion photometry of dust grains in the coma of 67P Churyumov-Gerasimenko , 2017 .

[18]  V. Afanasiev,et al.  Spatial variations of brightness, colour and polarization of dust in comet 67P/Churyumov-Gerasimenko , 2017 .

[19]  Giampiero Naletto,et al.  Dust mass distribution around comet 67P/Churyumov-Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras , 2017 .

[20]  J. Hovenier,et al.  Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains , 2017, 1707.04158.

[21]  K. Varmuza,et al.  Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  J. Blum,et al.  Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates , 2017, 1706.07512.

[23]  C. Dominik,et al.  The footprint of cometary dust analogues - I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data , 2017, 1705.07127.

[24]  F. Souvannavong,et al.  Close-up images of the final Philae landing site on comet 67P/Churyumov-Gerasimenko acquired by the ROLIS camera , 2017, 1701.00685.

[25]  Nicolas Altobelli,et al.  Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta , 2016 .

[26]  E. Grün,et al.  Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view , 2016 .

[27]  E. Palomba,et al.  Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals , 2016 .

[28]  Anny,et al.  Fractal cometary dust – a window into the early Solar system , 2016 .

[29]  C. Pilorget,et al.  Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of 67P/Churyumov–Gerasimenko , 2016 .

[30]  H. Leroux,et al.  Variations in cometary dust composition from Giotto to Rosetta, clues to their formation mechanisms , 2016 .

[31]  J. Renard,et al.  Properties of dust particles in comets from photometric and polarimetric observations of 67P , 2016 .

[32]  Y. Langevin,et al.  A first assessment of the strength of cometary particles collected in-situ by the COSIMA instrument onboard ROSETTA , 2016 .

[33]  F. Rietmeijer Energy dissipation at the silica glass/compressed aerogel interface: The fate of Wild 2 mineral grains and fragments smaller than ~100 nm , 2016 .

[34]  L. Colangeli,et al.  GIADA – Grain Impact Analyzer and Dust Accumulator – Onboard Rosetta spacecraft: Extended calibrations☆ , 2016 .

[35]  J. Brisset,et al.  Submillimetre-sized dust aggregate collision and growth properties - Experimental study of a multi-particle system on a suborbital rocket , 2016, 1706.07492.

[36]  S. Debei,et al.  Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov-Gerasimenko , 2016, 1608.07933.

[37]  J. Kissel,et al.  Searching for calcium‐aluminum‐rich inclusions in cometary particles with Rosetta/COSIMA , 2016 .

[38]  D. Brownlee Cosmic Dust: Building Blocks of Planets Falling from the Sky , 2016 .

[39]  Hans-Herbert Fischer,et al.  Dust Impact Monitor (SESAME-DIM) on board Rosetta/Philae: MIllimetric particle flux at comet 67P/Churyumov-Gerasimenko , 2016, 1605.06291.

[40]  V. Corte,et al.  A Simple Model for Understanding the DIM Dust Measurement at Comet 67P/Churyumov-Gerasimenko , 2016, 1604.07620.

[41]  Giampiero Naletto,et al.  EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION , 2016 .

[42]  M. Bentley,et al.  MIDAS: Lessons learned from the first spaceborne atomic force microscope , 2016, 1602.04332.

[43]  Luigi Colangeli,et al.  COMET 67P/CHURYUMOV–GERASIMENKO: CLOSE-UP ON DUST PARTICLE FRAGMENTS , 2016 .

[44]  E. Palomba,et al.  GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko , 2015 .

[45]  Masanori Kobayashi,et al.  Dust Impact Monitor (SESAME-DIM) Measurements at Comet 67P/Churyumov-Gerasimenko , 2015, 1510.01563.

[46]  Y. Langevin,et al.  Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko , 2015 .

[47]  S. Debei,et al.  Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015, 1509.02707.

[48]  F. Scholten,et al.  The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging , 2015, Science.

[49]  C. Pilorget,et al.  67P/Churyumov-Gerasimenko surface properties as derived from CIVA panoramic images , 2015, Science.

[50]  J. Hovenier,et al.  Experimental scattering matrices of clouds and randomly oriented particles , 2015 .

[51]  E. Grün,et al.  DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO , 2015 .

[52]  S. Debei,et al.  Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.

[53]  S. Debei,et al.  On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[54]  J. Blum,et al.  THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES , 2014, 1410.7199.

[55]  Donald E. Brownlee,et al.  The Stardust Mission: Analyzing Samples from the Edge of the Solar System , 2014 .

[56]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates , 2013, 1302.5532.

[57]  D. Brownlee,et al.  Dust Flux Monitor Instrument measurements during Stardust-NExT Flyby of Comet 9P/Tempel 1 , 2013 .

[58]  Michael Rowan-Robinson,et al.  An improved model for the infrared emission from the zodiacal dust cloud: cometary, asteroidal and interstellar dust , 2012, 1212.4759.

[59]  M. Burchell,et al.  Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density , 2012 .

[60]  Koji Wada,et al.  THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS , 2011 .

[61]  J. Hovenier,et al.  Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review , 2011 .

[62]  J. Blum,et al.  Free collisions in a microgravity many-particle experiment – II: The collision dynamics of dust-coated chondrules , 2011, 1105.3897.

[63]  E. Grün,et al.  Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target , 2010 .

[64]  J. Lasue,et al.  Polarimetric observations of comet 67P/Churyumov-Gerasimenko during its 2008–2009 apparition , 2010 .

[65]  W. Reach,et al.  The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006 , 2010, 1001.3775.

[66]  G. Cody,et al.  Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection , 2009 .

[67]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[68]  M. Zolensky,et al.  Dust in cometary comae: Present understanding of the structure and composition of dust particles , 2008 .

[69]  Koji Wada,et al.  Numerical Simulation of Dust Aggregate Collisions. II. Compression and Disruption of Three-Dimensional Aggregates in Head-on Collisions , 2008 .

[70]  S. Taylor,et al.  The classification of micrometeorites , 2008 .

[71]  J. Borg,et al.  Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils , 2008 .

[72]  Simon F. Green,et al.  Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations , 2008 .

[73]  J. Renard,et al.  Light scattering by fluffy Mg–Fe–SiO and C mixtures as cometary analogs (PROGRA2 experiment) , 2007 .

[74]  J. Lasue,et al.  Physical properties of cometary and interplanetary dust , 2007 .

[75]  R. Jaumann,et al.  The Rolis Experiment on the Rosetta Lander , 2007 .

[76]  P. Ehrenfreund,et al.  MIDAS – The Micro-Imaging Dust Analysis System for the Rosetta Mission , 2007 .

[77]  W. Reach,et al.  A survey of debris trails from short-period comets , 2007, 0704.2253.

[78]  U. Fink,et al.  Virtis: An Imaging Spectrometer for the Rosetta Mission , 2007 .

[79]  E. Grün,et al.  Dust Environment Modelling of Comet 67P/Churyumov-Gerasimenko , 2007, 1001.3010.

[80]  R. Trautner,et al.  Sesame – An Experiment of the Rosetta Lander Philae: Objectives and General Design , 2007 .

[81]  V. Della Corte,et al.  The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results , 2007 .

[82]  E. Grün,et al.  Cosima – High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta , 2007 .

[83]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[84]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[85]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[86]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[87]  J. Blum,et al.  The Physics of Protoplanetesimal Dust Agglomerates. I. Mechanical Properties and Relations to Primitive Bodies in the Solar System , 2006 .

[88]  J. Blum,et al.  Dust agglomeration , 2006 .

[89]  J. Blum,et al.  The 10 μm Infrared Band of Silicate Dust: A Laboratory Study Comparing the Aerosol and KBr Pellet Techniques , 2006, astro-ph/0609231.

[90]  J. Renard,et al.  Light scattering by fluffy particles with the PROGRA2 experiment: Mixtures of materials , 2006 .

[91]  S. Debei,et al.  The Dust Environment of Comet 67P/Churyumov-Gerasimenko , 2004, 1602.01965.

[92]  F. R. Krueger,et al.  The Cometary and Interstellar Dust Analyzer at Comet 81P/Wild 2 , 2004, Science.

[93]  Neil McBride,et al.  Dust Measurements in the Coma of Comet 81P/Wild 2 by the Dust Flux Monitor Instrument , 2004, Science.

[94]  T. Poppe Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates , 2003 .

[95]  John D Sherwood,et al.  A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. , 2002, Journal of pharmaceutical sciences.

[96]  H. Nakano,et al.  Rapid Growth of Asteroids Owing to Very Sticky Interstellar Organic Grains , 2002 .

[97]  T. Henning,et al.  Experiments on Collisional Grain Charging of Micron-sized Preplanetary Dust , 2000 .

[98]  N. Mcbride,et al.  In Situ Dust Measurements From within the Coma of 1P/Halley: First-Order Approximation with a Dust Dynamical Model , 2000 .

[99]  Hans-Jürgen Butt,et al.  Adhesion and Friction Forces between Spherical Micrometer-Sized Particles , 1999 .

[100]  D. Brownlee,et al.  Densities of Stratospheric Micrometeorites , 1994 .

[101]  J. Blum,et al.  Experimental Investigations on Aggregate-Aggregate Collisions in the Early Solar Nebula , 1993 .

[102]  F. Rietmeijer Size distributions in two porous chondritic micrometeorites , 1993 .

[103]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[104]  F. R. Krueger,et al.  The organic matter of comet Halley as inferred by joint gas phase and solid phase analyses , 1991 .

[105]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[106]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[107]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[108]  N. Thomas,et al.  Cometary Dust , 2018, Space science reviews.

[109]  A. Levasseur-Regourd,et al.  Polarimetry of Stars and Planetary Systems: Comets , 2015 .

[110]  J. Lasue,et al.  Cometary dust properties retrieved from polarization observations: Application to C/1995 O1 Hale–Bopp and 1P/Halley , 2009 .

[111]  K. Glassmeier,et al.  Rosetta-ESA's Mission to the Origin of the Solar System , 2009 .

[112]  A. Jones,et al.  The role of laboratory experiments in the characterisation of silicon–based cosmic material , 2003 .

[113]  F. Rietmeijer The Earliest Chemical Dust Evolution in the Solar Nebula , 2002 .

[114]  B. Battrick,et al.  Space missions to Halley's comet , 1986 .

[115]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .