Coefficients of ergodicity: structure and applications
暂无分享,去创建一个
[1] H. Tijms,et al. Exponential convergence of products of stochastic matrices , 1977 .
[2] E. Seneta,et al. Towards consensus: some convergence theorems on repeated averaging , 1977, Journal of Applied Probability.
[3] H. Cohn. Finite non-homogeneous Markov chains: Asymptotic behaviour , 1976, Advances in Applied Probability.
[4] J. Hajnal,et al. On products of non-negative matrices , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] E B Keeler,et al. Convergence of the age structure: applications of the projective metric. , 1975, Theoretical population biology.
[6] J. F. C. Kingman,et al. Geometrical aspects of the theory of non-homogeneous Markov chains , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] E. Seneta,et al. On the historical development of the theory of finite inhomogeneous Markov chains , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] E. Seneta. On strong ergodicity of inhomogeneous products of finite stochastic matrices , 1973 .
[9] C. Zenger. A comparison of some bounds for the nontrivial eigenvalues of stochastic matrices , 1972 .
[10] A. Paz. Definite and quasidefinite sets of stochastic matrices , 1965 .
[11] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic matrices , 1963 .
[12] M. Bartlett,et al. Weak ergodicity in non-homogeneous Markov chains , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] R. Dobrushin. Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .
[14] A. Brauer. Limits for the characteristic roots of a matrix. IV: Applications to stochastic matrices , 1952 .
[15] A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .