Investigating the Capitalize Effect of Sensor Position for Training Type Recognition in a Body Weight Training Support System

A body weight training (BWT) means the training which utilizes the self-weight instead of the weight machine. The feedback of form and proper training menu recommendation is important for maximizing the effect of BWT. The objective of this study is to realize a novel support system which allows beginners to perform effective BWT alone, under wearable computing environment. To make an effective feedback, it is necessary to recognize BWT type with high accuracy. However, since the accuracy is greatly affected by the position of wearable sensors, we need to know the sensor position which achieves the high accuracy in recognizing the BWT type. We investigated 10 types BWT recognition accuracy for each sensor position. We found that waist is the best position when only 1 sensor is used. When 2 sensors are used, we found that the best combination is of waist and wrist. We conducted an evaluation experiment to show the effectiveness of sensor position. As a result of leave-one-person-out cross-validation from 13 subjects to confirm validity, we calculated the F-measure of 93.5% when sensors are placed on both wrist and waist.

[1]  Daniel P. Siewiorek,et al.  Activity recognition and monitoring using multiple sensors on different body positions , 2006, International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06).

[2]  Paul Lukowicz,et al.  Never skip leg day: A novel wearable approach to monitoring gym leg exercises , 2016, 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[3]  K. Patrick,et al.  Health and the mobile phone. , 2008, American journal of preventive medicine.

[4]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[5]  Timo Sztyler,et al.  Hips Do Lie! A Position-Aware Mobile Fall Detection System , 2018, 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[6]  Diogo R. Ferreira,et al.  Preprocessing techniques for context recognition from accelerometer data , 2010, Personal and Ubiquitous Computing.

[7]  Yutaka Arakawa,et al.  SenStick: Comprehensive Sensing Platform with an Ultra Tiny All-In-One Sensor Board for IoT Research , 2017, J. Sensors.

[8]  Mani Srivastava,et al.  MiLift: Efficient Smartwatch-Based Workout Tracking Using Automatic Segmentation , 2018, IEEE Transactions on Mobile Computing.

[9]  Peter Kokol,et al.  Exercise repetition detection for resistance training based on smartphones , 2012, Personal and Ubiquitous Computing.