Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method

Abstract This paper presents an adjoint Lattice Boltzmann Method (LBM) coupled with the Level-Set Method (LSM) for topology optimization of thermal fluid flows. The adjoint-state formulation implies discrete velocity directions in order to take into account the LBM boundary conditions. These boundary conditions are introduced at the beginning of the adjoint-state method as the LBM residuals, so that the adjoint-state boundary conditions can appear directly during the adjoint-state equation formulation. The proposed method is tested with 3 numerical examples concerning thermal fluid flows, but with different objectives: minimization of the mean temperature in the domain, maximization of the heat evacuated by the fluid, and maximization of the heat exchange with heated solid parts. This latter example, treated in several articles, is used to validate our method. In these optimization problems, a limitation of the maximal pressure drop and of the porosity (number of fluid elements) is also applied. The obtained results demonstrate that the method is robust and effective for solving topology optimization of thermal fluid flows.

[1]  Yuying Yan,et al.  Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder – A LBM approach , 2008 .

[2]  Gudrun Thäter,et al.  Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods , 2013, Comput. Math. Appl..

[3]  François Bay,et al.  Induction heating processes optimization a general optimal control approach , 2003 .

[4]  Kurt Maute,et al.  Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method , 2012 .

[5]  Takayuki Yamada,et al.  A topology optimization method based on the level set method incorporating a fictitious interface energy , 2010 .

[6]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[7]  Martin Geier,et al.  Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method , 2014, Comput. Math. Appl..

[8]  Takaji Inamuro,et al.  A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and Its Application to a Heat-Transfer Problem , 2002 .

[9]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[10]  Yoshihiro Kanno,et al.  A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method , 2015 .

[11]  Eugene Kazantsev Parameterizing subgrid scale eddy effects in a shallow water model , 2017 .

[12]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[13]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[14]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[15]  Kurt Maute,et al.  Lattice Boltzmann Topology Optimization for Transient Flow , 2011 .

[16]  Pierre Sagaut,et al.  An adjoint-based lattice Boltzmann method for noise control problems , 2014, J. Comput. Phys..

[17]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[18]  A. Evgrafov Topology optimization of slightly compressible fluids , 2006 .

[19]  J. Korvink,et al.  Structure topology optimization: fully coupled level set method via FEMLAB , 2005 .

[20]  Takayuki Yamada,et al.  Topology optimization in thermal-fluid flow using the lattice Boltzmann method , 2016, J. Comput. Phys..

[21]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[22]  Qisu Zou,et al.  A improved incompressible lattice Boltzmann model for time-independent flows , 1995 .

[23]  Georg Pingen Optimal design for fluidic systems: Topology and shape optimization with the lattice Boltzmann method , 2008 .

[24]  Ercan M. Dede,et al.  Multiphysics Topology Optimization of Heat Transfer and Fluid Flow Systems , 2009 .

[25]  Georg Pingen,et al.  Topology Optimization for Thermal Transport , 2009 .

[26]  T. E. Bruns,et al.  Topology optimization of convection-dominated, steady-state heat transfer problems , 2007 .

[27]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[28]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[29]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Daniel R. Rousse,et al.  Optical tomography reconstruction algorithm with the finite element method: An optimal approach with regularization tools , 2013, J. Comput. Phys..

[31]  Takayuki Yamada,et al.  Matlab code for a level set-based topology optimization method using a reaction diffusion equation , 2014, Structural and Multidisciplinary Optimization.

[32]  Max Gunzburger,et al.  Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows , 2000 .

[33]  Takayuki Yamada,et al.  Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions , 2014, J. Comput. Phys..

[34]  Kurt Maute,et al.  Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization , 2009 .

[35]  Limin Wang,et al.  Heuristic optimality criterion algorithm for shape design of fluid flow , 2010, J. Comput. Phys..

[36]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[37]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[38]  Ole Sigmund,et al.  Topology optimization of unsteady flow problems using the lattice Boltzmann method , 2016, J. Comput. Phys..

[39]  Gilles Marck,et al.  Topology Optimization of Heat and Mass Transfer Problems: Laminar Flow , 2013 .

[40]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[41]  Kurt Maute,et al.  Level-set methods for structural topology optimization: a review , 2013 .

[42]  Jonas Tölke,et al.  Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA , 2009, Comput. Vis. Sci..

[43]  Sauro Succi,et al.  The lattice Boltzmann equation: a new tool for computational fluid-dynamics , 1991 .

[44]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[45]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[46]  Lingai Luo,et al.  Tree-network structure generation for heat conduction by cellular automaton , 2009 .

[47]  Ping Zhang,et al.  Topology optimization of unsteady incompressible Navier-Stokes flows , 2011, J. Comput. Phys..

[48]  Tsuyoshi Nomura,et al.  Topology optimization for fluid–thermal interaction problems under constant input power , 2013 .

[49]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[50]  K. Maute,et al.  Topology optimization of flow domains using the lattice Boltzmann method , 2007 .

[51]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[52]  Christian Obrecht,et al.  LBM based flow simulation using GPU computing processor , 2010, Comput. Math. Appl..

[53]  Lingai Luo,et al.  Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor , 2005 .

[54]  Shinji Nishiwaki,et al.  Shape and topology optimization based on the phase field method and sensitivity analysis , 2010, J. Comput. Phys..

[55]  S. Fatikow,et al.  Structural topology and shape optimization using a level set method with distance-suppression scheme , 2015 .

[56]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[57]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[58]  Xiaowen Shan,et al.  Lattice Boltzmann method for adiabatic acoustics , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  K. Maute,et al.  An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method , 2011 .

[60]  Orestis Malaspinas,et al.  Advances in multi-domain lattice Boltzmann grid refinement , 2012, J. Comput. Phys..

[61]  C. Shu,et al.  Simplified thermal lattice Boltzmann model for incompressible thermal flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[63]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[64]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[65]  Simon Marié,et al.  Etude de la méthode Boltzmann sur Réseau pour les simulations en aéroacoustique. , 2008 .

[66]  P. Lallemand,et al.  Adjoint lattice Boltzmann equation for parameter identification , 2006 .

[67]  Takayuki Yamada,et al.  A topology optimization method for a coupled thermal–fluid problem using level set boundary expressions , 2015 .

[68]  Qisu Zou,et al.  N ov 1 99 6 On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model , 2008 .

[69]  Wolfgang Schröder,et al.  The constrained reinitialization equation for level set methods , 2010, J. Comput. Phys..

[70]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[71]  Kenli Li,et al.  Entropic Lattice Boltzmann Method based high Reynolds number flow simulation using CUDA on GPU , 2013 .