Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps

Precision metrology and quantum measurement often demand that matter be prepared in well-defined quantum states for both internal and external degrees of freedom. Laser-cooled neutral atoms localized in a deeply confining optical potential satisfy this requirement. With an appropriate choice of wavelength and polarization for the optical trap, two electronic states of an atom can experience the same trapping potential, permitting coherent control of electronic transitions independent of the atomic center-of-mass motion. Here, we review a number of recent experiments that use this approach to investigate precision quantum metrology for optical atomic clocks and coherent control of optical interactions of single atoms and photons within the context of cavity quantum electrodynamics. We also provide a brief survey of promising prospects for future work.

[1]  A. Clairon,et al.  Laser Cooling of Cesiuml Atoms in Gray Optical Molasses Down to 1.1pK , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[2]  Cooling of a single atom in an optical trap inside a resonator , 2000, quant-ph/0005133.

[3]  Ji Young Kim,et al.  Optical dipole trap without inhomogeneous ac stark broadening , 2003 .

[4]  T Zelevinsky,et al.  New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. , 2008, Physical review letters.

[5]  C. Hamley,et al.  Cavity QED with optically transported atoms , 2003, quant-ph/0309052.

[6]  A. D. Boozer,et al.  Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. , 2006, Physical review letters.

[7]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[8]  Cirac,et al.  Cooling and localization of atoms in laser-induced potential wells. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  Tobias Donner,et al.  Cavity QED with a Bose–Einstein condensate , 2007, Nature.

[10]  P. Rosenbusch,et al.  An optical lattice clock with spin-polarized 87Sr atoms , 2007, 0710.0086.

[11]  Jun Ye,et al.  Precision test of mass-ratio variations with lattice-confined ultracold molecules. , 2007, Physical review letters.

[12]  Rodolphe Le Targat,et al.  Accurate optical lattice clock with 87Sr atoms. , 2006, Physical review letters.

[13]  Milburn,et al.  Quantum-mechanical model for continuous position measurements. , 1987, Physical review. A, General physics.

[14]  J. Gordon,et al.  Motion of atoms in a radiation trap , 1980 .

[15]  H. J. Kimble,et al.  Trapping of Single Atoms in Cavity QED , 1999 .

[16]  Jun Ye,et al.  Systematic study of the 87Srclock transition in an optical lattice. , 2005, Physical review letters.

[17]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[18]  A. D. Boozer,et al.  Reversible state transfer between light and a single trapped atom. , 2007, Physical review letters.

[19]  Tetsuya Ido,et al.  87Sr lattice clock with inaccuracy below 10 -15. , 2007, Physical review letters.

[20]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[21]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[22]  M. Takamoto,et al.  Ultrastable optical clock with neutral atoms in an engineered light shift trap , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[23]  D Leibfried,et al.  Coupling a single atomic quantum bit to a high finesse optical cavity. , 2002, Physical review letters.

[24]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[25]  H. Kimble,et al.  Quantum structure and dynamics for atom galleries , 1997 .

[26]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[27]  Observation of the vacuum Rabi spectrum for one trapped atom. , 2004, Physical review letters.

[28]  J Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2007, Optics letters.

[29]  T Zelevinsky,et al.  Narrow line photoassociation in an optical lattice. , 2006, Physical review letters.

[30]  G. Rempe,et al.  Vacuum-stimulated cooling of single atoms in three dimensions , 2005, quant-ph/0506067.

[31]  Chu,et al.  Laser cooling of atoms, ions, or molecules by coherent scattering , 2000, Physical review letters.

[32]  Jun Ye,et al.  Remote transfer of ultrastable frequency references via fiber networks. , 2007, The Review of scientific instruments.

[33]  E. Hinds,et al.  Atom detection and photon production in a scalable, open, optical microcavity. , 2007, Physical review letters.

[34]  Michito Imae,et al.  Improved Frequency Measurement of a One-Dimensional Optical Lattice Clock with a Spin-Polarized Fermionic 87Sr Isotope , 2006 .

[35]  M. Chapman,et al.  Deterministic loading of individual atoms to a high-finesse optical cavity. , 2007, Physical review letters.

[36]  Hideo Mabuchi,et al.  Quantum manipulation and measurement of single atoms in optical cavity QED , 1998, 1998 Conference on Precision Electromagnetic Measurements Digest (Cat. No.98CH36254).

[37]  Jun Ye,et al.  High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr. , 2004, Physical review letters.

[38]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[39]  K. N. Dollman,et al.  - 1 , 1743 .

[40]  P. Maunz,et al.  Cavity cooling of a single atom , 2004, Nature.

[41]  Jun Ye,et al.  Optical Atomic Coherence at the 1-Second Time Scale , 2006, Science.

[42]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[43]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[44]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[45]  Rodolphe Le Targat,et al.  Hyperpolarizability effects in a Sr optical lattice clock. , 2006, Physical review letters.

[46]  Jun Ye,et al.  Narrow line cooling: finite photon recoil dynamics. , 2004, Physical review letters.

[47]  Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion , 2007 .

[48]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[49]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[50]  C W Oates,et al.  Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. , 2006, Physical review letters.

[51]  M. Takamoto,et al.  An optical lattice clock , 2005, Nature.

[52]  K. Vahala Optical microcavities , 2003, Nature.

[53]  Tilo Steinmetz,et al.  Quantum information processing in optical lattices and magnetic microtraps , 2006, quant-ph/0605163.

[54]  A. Kuhn,et al.  A Single-Photon Server with Just One Atom , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[55]  M. Takamoto,et al.  Trapping of neutral mercury atoms and prospects for optical lattice clocks. , 2007, Physical review letters.

[56]  Michaud,et al.  Laser cooling of cesium atoms in gray optical molasses down to 1.1 microK. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[57]  J. Mckeever,et al.  Determination of the number of atoms trapped in an optical cavity. , 2004, Physical review letters.

[58]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[59]  M. Zhu,et al.  Prospects for using laser-prepared atomic fountains for optical frequency standards applications , 1989 .

[60]  M. Kuwata-Gonokami,et al.  Optimal Design of Dipole Potentials for E-cient Loading of Sr Atoms , 1999 .

[61]  Tetsuya Ido,et al.  Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature , 1999 .

[62]  Helmut Ritsch,et al.  Mechanical effects of light in optical resonators , 2003 .

[63]  Jon H. Shirley,et al.  NIST-F1: recent improvements and accuracy evaluations , 2005 .