Development and evaluation of an actual evapotranspiration estimation algorithm using satellite remote sensing and meteorological observational network in Oklahoma

Developmentevaluation of an actual evapotranspiration estimation algorithm using satellite remote sensingmeteorological observational network in Oklahoma Sadiq Ibrahim Khan a b , Yang Hong a b , Baxter Vieux a b & Wenjuan Liu c a School of Civil EngineeringEnvironmental Sciences, University of Oklahoma, Norman, OK, 73019, USA b Center for Natural HazardDisaster Study, Suite 3630, National Weather Center, Norman, OK, 73072, USA c College of ResourceEnvironment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China

[1]  최민하,et al.  실제 증발산 산정에 관한 The Surface Energy Balance System (SEBS) 모형 알고리즘 연구 , 2012 .

[2]  Yang Hong,et al.  Satellite-based observations of hydrological processes , 2010 .

[3]  D. Lettenmaier,et al.  Satellite‐based near‐real‐time estimation of irrigated crop water consumption , 2009 .

[4]  Ayse Irmak,et al.  Reference and Crop Evapotranspiration in South Central Nebraska. II: Measurement and Estimation of Actual Evapotranspiration for Corn , 2008 .

[5]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[6]  J. A. Tolk,et al.  ET mapping for agricultural water management: present status and challenges , 2008, Irrigation Science.

[7]  Jeroen C. J. H. Aerts,et al.  Estimates of spatial variation in evaporation using satellite‐derived surface temperature and a water balance model , 2008 .

[8]  Shafiqul Islam,et al.  Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model , 2008 .

[9]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[10]  Albert Olioso,et al.  Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula , 2007 .

[11]  M. S. Moran,et al.  Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed , 2007 .

[12]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[13]  Pamela L. Nagler,et al.  Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration , 2007 .

[14]  Assefa M. Melesse,et al.  A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields , 2007, Sensors (Basel, Switzerland).

[15]  Sutherland,et al.  Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet , 2007 .

[16]  Christopher Conrad,et al.  Generation and Assessment of MODIS Time Series using Quality Information , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[17]  T. Huntington Evidence for intensification of the global water cycle: Review and synthesis , 2006 .

[18]  Anthony Morse,et al.  A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning , 2005 .

[19]  James L. Wright,et al.  Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. , 2005 .

[20]  Douglas J. Hunsaker,et al.  Wheat basal crop coefficients determined by normalized difference vegetation index , 2005, Irrigation Science.

[21]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[22]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[23]  R. Scott,et al.  ECOHYDROLOGICAL IMPLICATIONS OF WOODY PLANT ENCROACHMENT , 2005 .

[24]  Pamela L. Nagler,et al.  Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data , 2005 .

[25]  Rasmus Houborg,et al.  Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data - application to Zealand, Denmark , 2004 .

[26]  Jinxi Wang,et al.  The influence of vegetation type on the hydrological process at the landscape scale , 2004 .

[27]  Z. Wan,et al.  Quality assessment and validation of the MODIS global land surface temperature , 2004 .

[28]  P. Pinter,et al.  Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index , 2003, Irrigation Science.

[29]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[30]  Ramakrishna R. Nemani,et al.  An operational remote sensing algorithm of land surface evaporation , 2003 .

[31]  Alan H. Strahler,et al.  Consistency of MODIS surface BRDF/Albedo retrievals 1. Algorithm performance , 2003 .

[32]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[33]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[34]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[35]  Jozsef Szilagyi,et al.  Vegetation Indices to Aid Areal Evapotranspiration Estimations , 2002 .

[36]  Baxter E. Vieux,et al.  Distributed Hydrologic Modeling Using GIS , 2001 .

[37]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[38]  S. Islam,et al.  Estimation of surface evaporation map over Southern Great Plains using remote sensing data , 2001 .

[39]  Jozsef Szilagyi,et al.  Can a vegetation index derived from remote sensing be indicative of areal transpiration , 2000 .

[40]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[41]  Albert Rango,et al.  Operational applications of remote sensing in hydrology: success, prospects and problems , 1998 .

[42]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[43]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[44]  R. Crago,et al.  Comparison of the Evaporative Fraction and the Priestley‐Taylor α for Parameterizing Daytime Evaporation , 1996 .

[45]  J. M. Lewis The Story behind the Bowen Ratio , 1995 .

[46]  W. Bausch Remote sensing of crop coefficients for improving the irrigation scheduling of corn , 1995 .

[47]  Michael Rast,et al.  Remote sensing applications in hydrological modeling , 1995, Remote Sensing.

[48]  N. U. Ahmed,et al.  Relations between evaporation coefficients and vegetation indices studied by model simulations , 1994 .

[49]  Dominique Courault,et al.  Surface temperature and evapotranspiration: Application of local scale methods to regional scales using satellite data , 1994 .

[50]  P. M. Seevers,et al.  Evapotranspiration estimation using a normalized difference vegetation index transformation of satellite data , 1994 .

[51]  A. Lindroth,et al.  Errors in Net Radiometry: Comparison and Evaluation of Six Radiometer Designs , 1992 .

[52]  Wilfried Brutsaert,et al.  Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation , 1992 .

[53]  Wilfried Brutsaert,et al.  Daily evaporation over a region from lower boundary layer profiles measured with radiosondes , 1991 .

[54]  W. James Shuttleworth,et al.  Insight from large-scale observational studies of land/atmosphere interactions , 1991 .

[55]  W. Collins,et al.  Global climate projections , 2007 .

[56]  Christopher J. Watts,et al.  Use of satellite data to estimate radiation and evaporation for northwest Mexico , 1999 .

[57]  James L. Wright,et al.  Derivation of alfalfa and grass reference evapotranspiration , 1996 .