A model for optimal sizing of photovoltaic irrigation water pumping systems

The previous methods for optimal sizing of photovoltaic (PV) irrigation water pumping systems separately considered the demand for hydraulic energy and possibilities of its production from available solar energy with the PV pumping system. Unlike such methods, this work approaches the subject problem systematically, meaning that all relevant system elements and their characteristics have been analyzed: PV water pumping system, local climate, boreholes, soil, crops and method of irrigation; therefore, the objective function has been defined in an entirely new manner. The result of such approach is the new mathematical hybrid simulation optimization model for optimal sizing of PV irrigation water pumping systems, that uses dynamic programming for optimizing, while the constraints were defined by the simulation model. The model was tested on two areas in Croatia, and it has been established that this model successfully takes into consideration all characteristic values and their relations in the integrated system. The optimal nominal electric power of PV generator, obtained in the manner presented, are relatively smaller than when the usual method of sizing is used. The presented method for solving the problem has paved the way towards the general model for optimal sizing of all stand-alone PV systems that have some type of energy storage, as well as optimal sizing of PV power plant that functions together with the storage hydroelectric power plant.