Chapter 4 Organic LED System Considerations

Publisher Summary This chapter discusses organic light-emitting diodes (OLEDs) system considerations. The advent of organic electroluminescent devices advanced from a long history of development of organic photocondoctors (OPCs) for xerographic copy machines. While the organic solar cell has a similar mechanism as the organic photoreceptor, the OLED or organic electroluminescent (EL) device has a different mechanism. In the application of organic EL devices to practical displays, the chapter discusses three fundamental issues: (1) stability (lifetime), (2) power efficiency, and (3) full-color capability. The chapter summarizes the present status of both molecular OLEDs and polymer LEDs in terms of panel performance and fabrication processes. Although efficiency is considered as a strong pro for molecular OLEDs, progress in the efficiency of polymer LEDs makes it comparable to that of molecular OLEDs.

[1]  J. C. Scott,et al.  Degradation and failure of MEH‐PPV light‐emitting diodes , 1996 .

[2]  Ching Wan Tang,et al.  Polysilicon TFT active matrix organic EL displays , 1997, Defense, Security, and Sensing.

[3]  Katsutoshi Nagai,et al.  Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly(N‐vinylcarbazole) , 1995 .

[4]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[5]  Yoshiyuki Okuda,et al.  Dot‐matrix display using organic light‐emitting diodes , 1997 .

[6]  S. Pearson,et al.  4.2: Design ofanlmproved Pixel fora Polysilicon Active‐Matrix Organic LED Display , 1998 .

[7]  G. Rikken,et al.  On the photochemical stability of dialkoxy–PPV; a quantitative approach , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Yang Yang,et al.  Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo , 1998 .

[9]  Shui-Tong Lee,et al.  Energy level alignment at Alq/metal interfaces , 1998 .

[10]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[11]  Lee-Mi Do,et al.  Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices , 1996 .

[12]  H. Antoniadis,et al.  Formation and growth of black spots in organic light‐emitting diodes , 1996 .

[13]  Yuji Hamada,et al.  White-Light-Emitting Material for Organic Electroluminescent Devices , 1996 .

[14]  David Braun,et al.  Crosstalk in Passive Matrix Polymer LED Displays , 1998 .

[15]  Chihaya Adachi,et al.  Electroluminescence of 1,3,4-Oxadiazole and Triphenylamine-Containing Molecules as an Emitter in Organic Multilayer Light Emitting Diodes , 1997 .

[16]  Jang‐Joo Kim,et al.  In situ investigation of degradation in polymeric electroluminescent devices using time-resolved confocal laser scanning microscope , 1997 .

[17]  Kazuhiko Seki,et al.  Energy-level alignment at model interfaces of organic electroluminescent devices studied by UV photoemission: trend in the deviation from the traditional way of estimating the interfacial electronic structures , 1998 .

[18]  C. H. Chen,et al.  Improved red dopants for organic electroluminescent devices , 1997 .

[19]  Yoshio Taniguchi,et al.  DOPED ORGANIC LIGHT EMITTING DIODES HAVING A 650-NM-THICK HOLE TRANSPORT LAYER , 1998 .

[20]  S. Toyoda,et al.  Near-ultraviolet light-emitting diodes based on /spl sigma/-conjugated linear silicon-backbone polymers , 1998 .

[21]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[22]  T. Yahagi,et al.  Micropatterning Method for the Cathode of the Organic Electroluminescent Device , 1997 .

[23]  H. Tanabe,et al.  Passive matrix display of organic LEDs , 1997 .

[24]  C. H. Chen,et al.  Electroluminescence of doped organic thin films , 1989 .

[25]  H. Kanai,et al.  Operation characteristics and degradation of organic electroluminescent devices , 1998 .

[26]  L. Do,et al.  Crystallization of organic thin films for electroluminescent devices , 1996 .

[27]  M. Tsuchida,et al.  Organic EL cells using alkaline metal compounds as electron injection materials , 1997 .

[28]  K. Yoshino,et al.  An organic infrared electroluminescent diode utilizing a phthalocyanine film , 1997 .

[29]  Ching Wan Tang,et al.  Organic electroluminescent devices with improved stability , 1996 .

[30]  Ching Wan Tang,et al.  Doped organic electroluminescent devices with improved stability , 1997 .

[31]  Chihaya Adachi,et al.  Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes , 1995 .

[32]  Junji Kido,et al.  Fabrication of highly efficient organic electroluminescent devices , 1998 .

[33]  Chishio Hosokawa,et al.  Organic multi-color electroluminescence display with fine pixels , 1997 .

[34]  Yoshiharu Sato,et al.  Characteristics of organic electroluminescent devices with new dopants , 1997 .

[35]  J. Sturm,et al.  Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates , 1997, IEEE Electron Device Letters.

[36]  F. Papadimitrakopoulos,et al.  Environmental stability of aluminum tris(8-hydroxyquinoline) (Alq3) and its implications in light emitting devices , 1997 .

[37]  Yoshiharu Sato,et al.  Stability of Organic Electroluminescent Diodes , 1994 .

[38]  Yoshiharu Sato,et al.  Effect of aromatic diamines as a cathode interface layer , 1997 .

[39]  B. Stevens,et al.  Photoperoxidation of unsaturated organic molecules. I. Relaxation and oxygen-quenching parameters of the sensitizer singlet state , 1968 .

[40]  Taehyoung Zyung,et al.  Photodegradation of poly(p ‐ phenylenevinylene) by laser light at the peak wavelength of electroluminescence , 1995 .

[41]  A. Miura,et al.  Molecular design for nonpolymeric organic dye glasses with thermal stability : relations between thermodynamic parameters and amorphous properties , 1993 .

[42]  Yuji Hamada,et al.  Influence of the Emission Site on the Running Durability of Organic Electroluminescent Devices , 1995 .