The limitations of nice mutually unbiased bases
暂无分享,去创建一个
[1] P. Wocjan,et al. New construction of mutually unbiased bases in square dimensions , 2004, Quantum Inf. Comput..
[2] M. Rötteler,et al. On the monomiality of nice error bases , 2003, IEEE Transactions on Information Theory.
[3] M. Grassl. On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.
[4] W. Wootters,et al. Discrete phase space based on finite fields , 2004, quant-ph/0401155.
[5] C. Archer. There is no generalization of known formulas for mutually unbiased bases , 2003, quant-ph/0312204.
[6] M. Rötteler,et al. Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.
[7] P. O. Boykin,et al. A New Proof for the Existence of Mutually Unbiased Bases , 2001, Algorithmica.
[8] M. Rötteler,et al. Beyond stabilizer codes I: Nice error bases , 2000, IEEE Trans. Inf. Theory.
[9] R. Werner. All teleportation and dense coding schemes , 2000, quant-ph/0003070.
[10] A. Calderbank,et al. Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .
[11] E. Knill. Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.
[12] Michael Aschbacher,et al. Finite Group Theory , 1994 .
[13] Y. Watatani. Latin squares, commuting squares, and intermediate subfactors , 1994 .
[14] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[15] W. Wootters,et al. Optimal state-determination by mutually unbiased measurements , 1989 .
[16] Harald Niederreiter,et al. Introduction to finite fields and their applications: List of Symbols , 1986 .
[17] S. G. Hoggar,et al. t-Designs in Projective Spaces , 1982, Eur. J. Comb..
[18] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[19] J. Seidel,et al. BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .
[20] W. Scott,et al. Group Theory. , 1964 .
[21] Johannes André,et al. Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .