The limitations of nice mutually unbiased bases

[1]  P. Wocjan,et al.  New construction of mutually unbiased bases in square dimensions , 2004, Quantum Inf. Comput..

[2]  M. Rötteler,et al.  On the monomiality of nice error bases , 2003, IEEE Transactions on Information Theory.

[3]  M. Grassl On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.

[4]  W. Wootters,et al.  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[5]  C. Archer There is no generalization of known formulas for mutually unbiased bases , 2003, quant-ph/0312204.

[6]  M. Rötteler,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[7]  P. O. Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2001, Algorithmica.

[8]  M. Rötteler,et al.  Beyond stabilizer codes I: Nice error bases , 2000, IEEE Trans. Inf. Theory.

[9]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[10]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[11]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[12]  Michael Aschbacher,et al.  Finite Group Theory , 1994 .

[13]  Y. Watatani Latin squares, commuting squares, and intermediate subfactors , 1994 .

[14]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[15]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[16]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[17]  S. G. Hoggar,et al.  t-Designs in Projective Spaces , 1982, Eur. J. Comb..

[18]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[19]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[20]  W. Scott,et al.  Group Theory. , 1964 .

[21]  Johannes André,et al.  Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe , 1954 .