Application of Taguchi's Optimization Method and Self-Adaptive Differential Evolution to the Synthesis of Linear Antenna Arrays

In this paper, the problem of designing linear antenna arrays for speciflc radiation properties is dealt with. The design problem is modeled as a single optimization problem. The objectives of this work are to minimize the maximum side lobe level (SLL) and perform null steering for isotropic linear antenna arrays by controlling difierent parameters of the array elements (position, amplitude, and phase). The optimization is performed using two techniques: Taguchi's optimization method and the self-adaptive difierential evolution (SADE) technique. The advantage of Taguchi's optimization technique is the ability of solving problems with a high degree of complexity using a small number of experiments in the optimization process Taguchi's method is easy to implement and converges to the desired goal quickly in comparison with gradient-based methods and particle swarm optimization (PSO) Results obtained using Taguchi's method are in very good agreement with those obtained using the SADE technique.

[1]  Fan Yang,et al.  Electromagnetics and Antenna Optimization Using Taguchi's Method , 2007, Electromagnetics and Antenna Optimization Using Taguchi's Method.

[2]  G. K. Mahanti,et al.  Phase-Only and Amplitude-Phase Only Synthesis of Dual-Beam Pattern Linear Antenna Arrays Using Floating-Point Genetic Algorithms , 2007 .

[3]  Jose Basterrechea,et al.  Hybrid Particle Swarm-Based Algorithms and Their Application to Linear Array Synthesis , 2009 .

[4]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[5]  Jose Basterrechea,et al.  Synthesis of Planar Arrays Using a Modified Particle Swarm Optimization Algorithm by Introducing a Selection Operator and Elitism , 2009 .

[6]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[7]  Fan Yang,et al.  Linear Antenna Array Synthesis Using Taguchi's Method: A Novel Optimization Technique in Electromagnetics , 2007, IEEE Transactions on Antennas and Propagation.

[8]  Tommaso Isernia,et al.  Optimal focusing of scalar fields subject to arbitrary upper bounds , 1998 .

[9]  Richard Formato,et al.  Central Force Optimization: A New Nature Inspired Computational Framework for Multidimensional Search and Optimization , 2007, NICSO.

[10]  Tommaso Isernia,et al.  A hybrid approach for the optimal synthesis of pencil beams through array antennas , 2004 .

[11]  T. Isernia,et al.  An effective approach for the optimal focusing of array fields subject to arbitrary upper bounds , 2000 .

[12]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[13]  Genichi Taguchi,et al.  Taguchi's Quality Engineering Handbook , 2004 .

[14]  Jhen-Yan Jhang,et al.  Application of electromagnetism-like algorithm to phase-only syntheses of antenna arrays , 2008 .

[15]  Giacomo Oliveri,et al.  Synthesis of monopulse sub-arrayed linear and planar array antennas with optimized sidelobes , 2009 .

[16]  Aqil,et al.  Synthesis of antenna arrays using the particle swarm optimization method , 2009 .

[17]  Gabriela Ciuprina,et al.  Use of intelligent-particle swarm optimization in electromagnetics. IEEE Trans Mag , 2002 .

[18]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[19]  Wei-Chung Weng,et al.  Optimal Design of CPW Slot Antennas Using Taguchi's Method , 2009, IEEE Transactions on Magnetics.

[20]  A. Rydberg,et al.  Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm , 2003 .

[21]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[22]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[23]  Sotirios K. Goudos,et al.  Design of microwave broadband absorbers using a self-adaptive differential evolution algorithm , 2009 .

[24]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  M. Panduro,et al.  Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS , 2008 .

[27]  T. Isernia,et al.  Optimal far-field focusing of uniformly spaced arrays subject to arbitrary upper bounds in nontarget directions , 2002 .

[28]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[29]  W. T. Li,et al.  AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR PATTERN SYNTHESIS OF PHASED ARRAYS , 2008 .

[30]  Suad Basbug,et al.  INTERFERENCE SUPPRESSION OF LINEAR ANTENNA ARRAYS BY AMPLITUDE-ONLY CONTROL USING A BACTERIAL FORAGING ALGORITHM , 2008 .