Complete Translation of the Hepatitis C Virus Genome In Vitro: Membranes Play a Critical Role in the Maturation of All Virus Proteins except for NS3

ABSTRACT We developed an in vitro translation extract from Krebs-2 cells that translates the entire open reading frame of the hepatitis C virus (HCV) strain H77 and properly processes the viral protein precursors when supplemented with canine microsomal membranes (CMMs). Translation of the C-terminal portion of the viral polyprotein in this system is documented by the synthesis of NS5B. Evidence for posttranslational modification of the viral proteins, the N-terminal glycosylation of E1 and the E2 precursor (E2-p7), and phosphorylation of NS5A is presented. With the exception of NS3, efficient generation of all virus-specific proteins is CMM dependent. A time course of the appearance of HCV products indicates that the viral polyprotein is cleaved cotranslationally. A competitive inhibitor of the NS3 protease inhibited accumulation of NS3, NS4B, NS5A, and NS5B, but not that of NS2 or structural proteins. CMMs also stabilized HCV mRNA during translation. Finally, the formyl-[35S]methionyl moiety of the initiator tRNAMet was incorporated exclusively into the core protein portion of the polyprotein, demonstrating that translation initiation in this system occurs with high fidelity.

[1]  J. Doudna,et al.  Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Penin,et al.  Membrane Association of the RNA-Dependent RNA Polymerase Is Essential for Hepatitis C Virus RNA Replication , 2004, Journal of Virology.

[3]  C. Rice,et al.  An N-Terminal Amphipathic Helix in Hepatitis C Virus (HCV) NS4B Mediates Membrane Association, Correct Localization of Replication Complex Proteins, and HCV RNA Replication , 2004, Journal of Virology.

[4]  F. Penin,et al.  Regulation of Hepatitis C Virus Polyprotein Processing by Signal Peptidase Involves Structural Determinants at the p7 Sequence Junctions* , 2004, Journal of Biological Chemistry.

[5]  S. Polyak,et al.  Unique Features of Hepatitis C Virus Capsid Formation Revealed by De Novo Cell-Free Assembly , 2004, Journal of Virology.

[6]  M. Lai,et al.  Interactions between Viral Nonstructural Proteins and Host Protein hVAP-33 Mediate the Formation of Hepatitis C Virus RNA Replication Complex on Lipid Raft , 2004, Journal of Virology.

[7]  N. Sonenberg,et al.  An efficient system for cap- and poly(A)-dependent translation in vitro. , 2004, Methods in molecular biology.

[8]  J. Dubuisson,et al.  Characterization of the expression of the hepatitis C virus F protein. , 2003, The Journal of general virology.

[9]  N. Sonenberg,et al.  Cell-Free Synthesis of Encephalomyocarditis Virus , 2003, Journal of Virology.

[10]  D. Lamarre,et al.  An NS3 Serine Protease Inhibitor Abrogates Replication of Subgenomic Hepatitis C Virus RNA* , 2003, Journal of Biological Chemistry.

[11]  C. Rice,et al.  Amphipathic Helix-Dependent Localization of NS5A Mediates Hepatitis C Virus RNA Replication , 2003, Journal of Virology.

[12]  R. Bartenschlager,et al.  Identification of the Hepatitis C Virus RNA Replication Complex in Huh-7 Cells Harboring Subgenomic Replicons , 2003, Journal of Virology.

[13]  P. Bonneau,et al.  Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. , 2003, Angewandte Chemie.

[14]  Zhenming Xu,et al.  Triple Decoding of Hepatitis C Virus RNA by Programmed Translational Frameshifting , 2003, Molecular and Cellular Biology.

[15]  Ralf Bartenschlager,et al.  Viral and Cellular Determinants of Hepatitis C Virus RNA Replication in Cell Culture , 2003, Journal of Virology.

[16]  C. Hellen,et al.  Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. , 2003, Genes & development.

[17]  H. Blum,et al.  [Molecular virology of hepatitis C]. , 2002, Praxis.

[18]  F. Penin,et al.  The Hepatitis C Virus RNA-Dependent RNA Polymerase Membrane Insertion Sequence Is a Transmembrane Segment , 2002, Journal of Virology.

[19]  A. Koromilas,et al.  PKR-Dependent Mechanisms of Gene Expression from a Subgenomic Hepatitis C Virus Clone , 2002, Journal of Virology.

[20]  Nahum Sonenberg,et al.  Hepatitis C therapeutics: current status and emerging strategies , 2002, Nature Reviews Drug Discovery.

[21]  J. Lytle,et al.  Domains on the hepatitis C virus internal ribosome entry site for 40s subunit binding. , 2002, RNA.

[22]  M. Lai,et al.  Hepatitis C virus IRES-dependent translation is insensitive to an eIF2alpha-independent mechanism of inhibition by interferon in hepatocyte cell lines. , 2002, Virology.

[23]  U. Georgopoulou,et al.  Alternate Translation Occurs within the Core Coding Region of the Hepatitis C Viral Genome* , 2002, The Journal of Biological Chemistry.

[24]  R. Bartenschlager,et al.  Persistent and Transient Replication of Full-Length Hepatitis C Virus Genomes in Cell Culture , 2002, Journal of Virology.

[25]  Volker Brass,et al.  An Amino-terminal Amphipathic α-Helix Mediates Membrane Association of the Hepatitis C Virus Nonstructural Protein 5A* , 2002, The Journal of Biological Chemistry.

[26]  T. Hügle,et al.  Functional Properties of a Monoclonal Antibody Inhibiting the Hepatitis C Virus RNA-dependent RNA Polymerase* , 2002, The Journal of Biological Chemistry.

[27]  D. Lamarre,et al.  In Vitro Characterization of a Purified NS2/3 Protease Variant of Hepatitis C Virus* , 2001, The Journal of Biological Chemistry.

[28]  N. Sonenberg,et al.  Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation. , 2001, RNA.

[29]  C. Rice,et al.  Determinants for Membrane Association of the Hepatitis C Virus RNA-dependent RNA Polymerase* , 2001, The Journal of Biological Chemistry.

[30]  Zhenming Xu,et al.  Synthesis of a novel hepatitis C virus protein by ribosomal frameshift , 2001, The EMBO journal.

[31]  M. Kohara,et al.  Hepatitis C virus core particle detected by immunoelectron microscopy and optical rotation technique. , 2001, Hepatology research : the official journal of the Japan Society of Hepatology.

[32]  C. Rice,et al.  The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. , 2001, Virology.

[33]  D. Stump,et al.  Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. , 2001, RNA.

[34]  N. Sonenberg,et al.  The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure. , 2001, RNA.

[35]  K. Zhou,et al.  Mechanism of ribosome recruitment by hepatitis C IRES RNA. , 2001, RNA.

[36]  C. Rice,et al.  Efficient initiation of HCV RNA replication in cell culture. , 2000, Science.

[37]  J. Dubuisson,et al.  Glycosylation of the Hepatitis C Virus Envelope Protein E1 Is Dependent on the Presence of a Downstream Sequence on the Viral Polyprotein* , 2000, The Journal of Biological Chemistry.

[38]  P. Sarnow,et al.  Initiation of Protein Synthesis from the A Site of the Ribosome , 2000, Cell.

[39]  C. Hellen,et al.  An Enzymatic Footprinting Analysis of the Interaction of 40S Ribosomal Subunits with the Internal Ribosomal Entry Site of Hepatitis C Virus , 2000, Journal of Virology.

[40]  R. Bartenschlager,et al.  Replication of hepatitis C virus. , 2000, The Journal of general virology.

[41]  C. Rice,et al.  Subcellular Localization, Stability, andtrans-Cleavage Competence of the Hepatitis C Virus NS3-NS4A Complex Expressed in Tetracycline-Regulated Cell Lines , 2000, Journal of Virology.

[42]  A. Folgori,et al.  Biochemical and Immunologic Properties of the Nonstructural Proteins of the Hepatitis C Virus: Implications for Development of Antiviral Agents and Vaccines , 2000, Seminars in liver disease.

[43]  J. Hershey,et al.  2 The Pathway and Mechanism of Initiation of Protein Synthesis , 2000 .

[44]  N. Sonenberg,et al.  Translational control of gene expression , 2000 .

[45]  C. Rice,et al.  Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. , 2000, Current topics in microbiology and immunology.

[46]  R. De Francesco,et al.  Hyperphosphorylation of the Hepatitis C Virus NS5A Protein Requires an Active NS3 Protease, NS4A, NS4B, and NS5A Encoded on the Same Polyprotein , 1999, Journal of Virology.

[47]  Ralf Bartenschlager,et al.  Modulation of Hepatitis C Virus NS5A Hyperphosphorylation by Nonstructural Proteins NS3, NS4A, and NS4B , 1999, Journal of Virology.

[48]  J. Dubuisson,et al.  Characterization of Hepatitis C Virus E2 Glycoprotein Interaction with a Putative Cellular Receptor, CD81 , 1999, Journal of Virology.

[49]  J. Silver,et al.  Replication of Subgenomic Hepatitis C Virus Rnas in a Hepatoma Cell Line , 1999 .

[50]  Desok Kim,et al.  Natural Variation in Translational Activities of the 5′ Nontranslated RNAs of Hepatitis C Virus Genotypes 1a and 1b: Evidence for a Long-Range RNA-RNA Interaction outside of the Internal Ribosomal Entry Site , 1999, Journal of Virology.

[51]  P. Parham,et al.  Hepatitis C virus envelope glycoprotein E1 originates in the endoplasmic reticulum and requires cytoplasmic processing for presentation by class I MHC molecules. , 1999, Journal of immunology.

[52]  R. Cortese,et al.  Product inhibition of the hepatitis C virus NS3 protease. , 1998, Biochemistry.

[53]  R. Jackson,et al.  A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. , 1998, Genes & development.

[54]  L. Pacini,et al.  Copyright © 1997, American Society for Microbiology In Vitro Study of the NS2-3 Protease of Hepatitis C Virus , 1997 .

[55]  M. Yanagi,et al.  Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Nomoto,et al.  Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. , 1997, Virology.

[57]  C. Hellen,et al.  Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry , 1996, Molecular and cellular biology.

[58]  M. Honda,et al.  Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. , 1996, RNA.

[59]  A. Urbani,et al.  Activity of purified hepatitis C virus protease NS3 on peptide substrates , 1996, Journal of virology.

[60]  M. Honda,et al.  Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. , 1996, Virology.

[61]  J. Flanegan,et al.  Assays for poliovirus polymerase, 3D(Pol), and authentic RNA replication in HeLa S10 extracts. , 1996, Methods in enzymology.

[62]  L. Pacini,et al.  The NS2 protein of hepatitis C virus is a transmembrane polypeptide , 1995, Journal of virology.

[63]  R. Jackson,et al.  Unique features of internal initiation of hepatitis C virus RNA translation. , 1995, The EMBO journal.

[64]  M. Houghton,et al.  Complex processing and protein:protein interactions in the E2:NS2 region of HCV. , 1994, Virology.

[65]  C. Rice,et al.  Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and Sindbis viruses , 1994, Journal of virology.

[66]  R. Bartenschlager,et al.  Kinetic and structural analyses of hepatitis C virus polyprotein processing , 1994, Journal of virology.

[67]  C. Rice,et al.  Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini , 1994, Journal of virology.

[68]  G. Migliaccio,et al.  Biosynthesis and biochemical properties of the hepatitis C virus core protein , 1994, Journal of virology.

[69]  N. Sonenberg,et al.  Dominant negative mutants of mammalian translation initiation factor eIF‐4A define a critical role for eIF‐4F in cap‐dependent and cap‐independent initiation of translation. , 1994, The EMBO journal.

[70]  N. Kato,et al.  Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. Rice,et al.  Expression and identification of hepatitis C virus polyprotein cleavage products , 1993, Journal of virology.

[72]  A. Nomoto,et al.  Internal ribosome entry site within hepatitis C virus RNA , 1992, Journal of virology.

[73]  A. Paul,et al.  Cell-free, de novo synthesis of poliovirus. , 1991, Science.

[74]  N. Kato,et al.  Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Jackson Potassium salts influence the fidelity of mRNA translation initiation in rabbit reticulocyte lysates: unique features of encephalomyocarditis virus RNA translation. , 1991, Biochimica et biophysica acta.

[76]  K. Luo,et al.  Cyanogen bromide cleavage and proteolytic peptide mapping of proteins immobilized to membranes. , 1991, Methods in enzymology.

[77]  F. Maley,et al.  Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. , 1989, Analytical biochemistry.

[78]  V. Agol,et al.  A tentative model of formation of structural proteins of tick‐borne encephalitis virus (flavivirus) , 1986, FEBS letters.

[79]  V. Agol,et al.  Differences between translation products of tick-borne encephalitis virus RNA in cell-free systems from Krebs-2 cells and rabbit reticulocytes: involvement of membranes in the processing of nascent precursors of flavivirus structural proteins. , 1984, Virology.

[80]  B. Semler,et al.  In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate , 1984, Journal of virology.

[81]  R. Jackson,et al.  Processing of the Encephalomyocarditis Virus Capsid Precursor Protein Studies in Rabbit Reticulocyte Lysates Incubated with N-Formyl-[35S]Methionine-tRNAfMet , 1983, Journal of virology.

[82]  G. Blobel,et al.  Preparation of microsomal membranes for cotranslational protein translocation. , 1983, Methods in enzymology.

[83]  Monckton Rp,et al.  Restricted translation of the genome of the flavivirus Kunjin in vitro. , 1982 .

[84]  V. Agol,et al.  Leader polypeptides encoded in the 5′‐region of the encephalomyocarditis virus genome , 1982, FEBS letters.

[85]  R. Monckton,et al.  Restricted translation of the genome of the flavivirus Kunjin in vitro. , 1982, The Journal of general virology.

[86]  V. Agol,et al.  Translation of tick-borne encephalitis virus (flavivirus) genome in vitro: synthesis of two structural polypeptides. , 1981, Virology.

[87]  M. Beato,et al.  In vitro translation of 42 S virus-specific RNA from cells infected with the flavivirus West Nile virus. , 1979, Virology.

[88]  L. Villa-komaroff,et al.  Complete translation of poliovirus RNA in a eukaryotic cell-free system. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. Mathews,et al.  The rate of polypeptide chain elongation in a cell-free system from Krebs II ascites cells. , 1974, Biochimica et biophysica acta.

[90]  W. M. Stanley,et al.  Specific aminoacylation of the methionine-specific tRNA's of eukaryotes. , 1974, Methods in enzymology.

[91]  M. Coughlan,et al.  Enzyme modulation as an approach to clinical analysis: Investigations on the feasibility of the method and the problems encountered , 1973, FEBS letters.

[92]  A. Smith,et al.  The initiation of protein synthesis directed by the RNA from encephalomyocarditis virus. , 1973, European journal of biochemistry.

[93]  A. Shatkin,et al.  Initiation of picornavirus protein synthesis in ascites cell extracts. , 1972, Proceedings of the National Academy of Sciences of the United States of America.