Role for Escherichia coli YidD in Membrane Protein Insertion

ABSTRACT YidC has an essential but poorly defined function in membrane protein insertion and folding in bacteria. The yidC gene is located in a gene cluster that is highly conserved in Gram-negative bacteria, the gene order being rpmH, rnpA, yidD, yidC, and trmE. Here, we show that Escherichia coli yidD, which overlaps with rnpA and is only 2 bp upstream of yidC, is expressed and localizes to the inner membrane, probably through an amphipathic helix. Inactivation of yidD had no discernible effect on cell growth and viability. However, compared to control cells, ΔyidD cells were affected in the insertion and processing of three YidC-dependent inner membrane proteins. Furthermore, in vitro cross-linking showed that YidD is in proximity of a nascent inner membrane protein during its localization in the Sec-YidC translocon, suggesting that YidD might be involved in the insertion process.

[1]  M. Stumpf,et al.  Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. , 2010, FEMS microbiology reviews.

[2]  G. Phillips,et al.  Versatility of inner membrane protein biogenesis in Escherichia coli , 2003, Molecular microbiology.

[3]  F. Mehraein-Ghomi,et al.  Importance of using lac rather than ara promoter vectors for modulating the levels of toxic gene products in Escherichia coli , 1998, Molecular microbiology.

[4]  Paul Horton,et al.  Better Prediction of Protein Cellular Localization Sites with the it k Nearest Neighbors Classifier , 1997, ISMB.

[5]  Jean-Michel Claverie,et al.  Phydbac2: improved inference of gene function using interactive phylogenomic profiling and chromosomal location analysis , 2004, Nucleic Acids Res..

[6]  J. Tame,et al.  Limited tolerance towards folded elements during secretion of the autotransporter Hbp , 2007, Molecular microbiology.

[7]  A. Driessen,et al.  Subunit a of Cytochrome o Oxidase Requires Both YidC and SecYEG for Membrane Insertion* , 2006, Journal of Biological Chemistry.

[8]  J. Walleczek,et al.  Protein-protein cross-linking of the 50 S ribosomal subunit of Escherichia coli using 2-iminothiolane. Identification of cross-links by immunoblotting techniques. , 1989, The Journal of biological chemistry.

[9]  A. Kuhn,et al.  Membrane biogenesis of subunit II of cytochrome bo oxidase: contrasting requirements for insertion of N-terminal and C-terminal domains. , 2006, Journal of molecular biology.

[10]  F. Blattner,et al.  DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. , 1993, Genomics.

[11]  I. Chopra,et al.  Comparison of the polypeptide composition of Escherichia coli outer membranes prepared by two methods , 1980, Journal of bacteriology.

[12]  D. Daley,et al.  Systematic analysis of native membrane protein complexes in Escherichia coli. , 2011, Journal of proteome research.

[13]  M. Urbanus,et al.  Sec‐dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC , 2001, EMBO reports.

[14]  S. Altman,et al.  Nucleotide sequence and in vitro processing of a precursor molecule to Escherichia coli 4.5 S RNA. , 1976, The Journal of biological chemistry.

[15]  A. Bairoch,et al.  Low molecular weight proteins: A challenge for post‐genomic research , 1998, Electrophoresis.

[16]  C. D. de Koster,et al.  Detection of cross‐links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins , 2008, FEBS letters.

[17]  O. Nureki,et al.  Structure and function of a membrane component SecDF that enhances protein export , 2011, Nature.

[18]  D. Drew,et al.  Targeting, Insertion, and Localization of Escherichia coli YidC* , 2002, The Journal of Biological Chemistry.

[19]  O. Skovgaard Nucleotide sequence of a Proteus mirabilis DNA fragment homologous to the 60K-rnpA-rpmH-dnaA-dnaN-recF-gyrB region of Escherichia coli. , 1990, Gene.

[20]  J. de Gier,et al.  Distinct Requirements for Translocation of the N-tail and C-tail of the Escherichia coli Inner Membrane Protein CyoA* , 2006, Journal of Biological Chemistry.

[21]  Klaus Schulten,et al.  Cryo–EM structure of the ribosome–SecYE complex in the membrane environment , 2011, Nature Structural &Molecular Biology.

[22]  G. Cook,et al.  Activators of the Glutamate-Dependent Acid Resistance System Alleviate Deleterious Effects of YidC Depletion in Escherichia coli , 2011, Journal of bacteriology.

[23]  Jun Yu,et al.  A Systematic Survey of Mini-Proteins in Bacteria and Archaea , 2008, PloS one.

[24]  David J F du Plessis,et al.  The Sec translocase. , 2011, Biochimica et biophysica acta.

[25]  D. Esposito,et al.  The complete nucleotide sequence of bacteriophage HP1 DNA. , 1996, Nucleic acids research.

[26]  J. Herrmann,et al.  Saccharomyces cerevisiae Cox18 complements the essential Sec‐independent function of Escherichia coli YidC , 2007, The FEBS journal.

[27]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. van der Laan,et al.  A conserved function of YidC in the biogenesis of respiratory chain complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Linn,et al.  Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ , 1990, Journal of bacteriology.

[30]  G. von Heijne,et al.  Protein Complexes of the Escherichia coli Cell Envelope* , 2005, Journal of Biological Chemistry.

[31]  J. Foster,et al.  The Era‐like GTPase TrmE conditionally activates gadE and glutamate‐dependent acid resistance in Escherichia coli , 2004, Molecular microbiology.

[32]  W. Wickner,et al.  Functional reconstitution of bacterial Tat translocation in vitro , 2001, The EMBO journal.

[33]  D. Boehringer,et al.  YidC and Oxa1 form dimeric insertion pores on the translating ribosome. , 2009, Molecular cell.

[34]  W. Neupert,et al.  Ribosome binding to the Oxa1 complex facilitates co‐translational protein insertion in mitochondria , 2003, The EMBO journal.

[35]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[36]  P. Degnan,et al.  Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. , 2005, Genome research.

[37]  R. Valdivia,et al.  The Obligate Intracellular Pathogen Chlamydia trachomatis Targets Host Lipid Droplets , 2006, Current Biology.

[38]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[39]  R. Stuart,et al.  Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C‐terminal region of Oxa1 , 2003, The EMBO journal.

[40]  James W. Brown,et al.  Genes within genes within bacteria. , 2003, Trends in biochemical sciences.

[41]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[42]  A. Driessen,et al.  Biogenesis of membrane bound respiratory complexes in Escherichia coli. , 2010, Biochimica et biophysica acta.

[43]  J. Tommassen,et al.  Optimal posttranslational translocation of the precursor of PhoE protein across Escherichia coli membrane vesicles requires both ATP and the protonmotive force. , 1987, Biochimica et biophysica acta.

[44]  E. Hartmann,et al.  Diversity and evolution of protein translocation. , 2005, Annual review of microbiology.

[45]  N. Nanninga,et al.  Penicillin‐binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid‐cell in comparison with the old cell pole , 2003, Molecular microbiology.

[46]  T. Atlung,et al.  The nucleotide sequence of the dnaA gene promoter and of the adjacent rpmH gene, coding for the ribosomal protein L34, of Escherichia coli. , 1982, The EMBO journal.

[47]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[48]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[49]  Douglas B. Kell,et al.  Comparative Genomic Assessment of Novel Broad-Spectrum Targets for Antibacterial Drugs , 2004, Comparative and functional genomics.

[50]  R. Valdivia,et al.  Multifunctional analysis of Chlamydia‐specific genes in a yeast expression system , 2006, Molecular microbiology.

[51]  G. Koningstein,et al.  The Conserved Third Transmembrane Segment of YidC Contacts Nascent Escherichia coli Inner Membrane Proteins* , 2008, Journal of Biological Chemistry.

[52]  F. Sharom,et al.  Functional Characterization of Escherichia coli MsbA , 2008, Journal of Biological Chemistry.

[53]  Peng Wang,et al.  Assembly of bacterial inner membrane proteins. , 2011, Annual review of biochemistry.

[54]  K. V. van Wijk,et al.  Characterization of the consequences of YidC depletion on the inner membrane proteome of E. coli using 2D blue native/SDS-PAGE. , 2011, Journal of molecular biology.

[55]  Peng Wang,et al.  Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. , 2011, Biochimica et biophysica acta.

[56]  Frank Sargent,et al.  A subset of bacterial inner membrane proteins integrated by the twin‐arginine translocase , 2003, Molecular microbiology.