The Series Product and Its Application to Quantum Feedforward and Feedback Networks

The purpose of this paper is to present simple and general algebraic methods for describing series connections in quantum networks. These methods build on and generalize existing methods for series (or cascade) connections by allowing for more general interfaces, and by introducing an efficient algebraic tool, the series product. We also introduce another product, which we call the concatenation product, that is useful for assembling and representing systems without necessarily having connections. We show how the concatenation and series products can be used to describe feedforward and feedback networks. A selection of examples from the quantum control literature are analyzed to illustrate the utility of our network modeling methodology.

[1]  V. P. Belavkin,et al.  Quantum continual measurements and a posteriori collapse on CCR , 1992 .

[2]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[3]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[4]  J. Gough Quantum Stratonovich calculus and the quantum Wong-Zakai theorem , 2005, math-ph/0511046.

[5]  H. Carmichael An open systems approach to quantum optics , 1993 .

[6]  H. Mabuchi,et al.  Quantum trajectories for realistic detection , 2002 .

[7]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[8]  D. Sworder Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[9]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[10]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[11]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[12]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[13]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[14]  M. Yanagisawa,et al.  Linear quantum feedback networks , 2008 .

[15]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[16]  JOHN GOUGH Holevo-Ordering and the Continuous-Time Limit for Open Floquet Dynamics , 2004 .

[17]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[18]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[19]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[20]  J. Gough,et al.  Construction of bilinear control Hamiltonians using the series product and quantum feedback , 2008, 0807.4225.

[21]  Matthew R. James,et al.  Quantum Dissipative Systems and Feedback Control Design by Interconnection , 2007, IEEE Transactions on Automatic Control.

[22]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[23]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[24]  E. Merzbacher Quantum mechanics , 1961 .

[25]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[26]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[27]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[28]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[29]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[30]  A. S. Holevo TIME-ORDERED EXPONENTIALS IN QUANTUM STOCHASTIC CALCULUS , 1992 .

[31]  M. James,et al.  Stability, gain, and robustness in quantum feedback networks (13 pages) , 2005, quant-ph/0511140.

[32]  M.R. James,et al.  H∞ Control of Linear Quantum Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.