Regulatory crosstalk of the metabolic network.

[1]  Hanna Y. Irie,et al.  Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment , 2009, Nature.

[2]  J. Pronk,et al.  When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation , 2006, Molecular systems biology.

[3]  C. Grant,et al.  Differential Protein S-Thiolation of Glyceraldehyde-3-Phosphate Dehydrogenase Isoenzymes Influences Sensitivity to Oxidative Stress , 1999, Molecular and Cellular Biology.

[4]  A. Wagner Robustness and Evolvability in Living Systems , 2005 .

[5]  Mohammad M. Ataai,et al.  Pyruvate Kinase-Deficient Escherichia coli Exhibits Increased Plasmid Copy Number and Cyclic AMP Levels , 2009, Journal of bacteriology.

[6]  Justin R. Cross,et al.  ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation , 2009, Science.

[7]  T. Henkin Riboswitch RNAs: using RNA to sense cellular metabolism. , 2008, Genes & development.

[8]  Y. Fujita Carbon Catabolite Control of the Metabolic Network in Bacillus subtilis , 2009, Bioscience, biotechnology, and biochemistry.

[9]  C. Grant,et al.  Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. , 2003, The Biochemical journal.

[10]  B. Daignan-Fornier,et al.  Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways. , 2009, Genes & development.

[11]  W. Ying NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. , 2008, Antioxidants & redox signaling.

[12]  A. Kudlicki,et al.  Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes , 2005, Science.

[13]  Kara Dolinski,et al.  Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. , 2005, Molecular biology of the cell.

[14]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[15]  A. Vera-López,et al.  Global Self-Organization of the Cellular Metabolic Structure , 2008, PloS one.

[16]  B. Kemp,et al.  AMPK in Health and Disease. , 2009, Physiological reviews.

[17]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[18]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Hans Lehrach,et al.  Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response , 2009, Nature Biotechnology.

[20]  D. Hoyle,et al.  Growth control of the eukaryote cell: a systems biology study in yeast , 2007, Journal of biology.

[21]  M. Reuss,et al.  In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. , 1993, Analytical biochemistry.

[22]  H. Lehrach,et al.  Interfering with Glycolysis Causes Sir2-Dependent Hyper-Recombination of Saccharomyces cerevisiae Plasmids , 2009, PloS one.

[23]  S. West,et al.  Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1 , 2009, Science.

[24]  Juan Miranda-Ríos,et al.  The THI-box riboswitch, or how RNA binds thiamin pyrophosphate. , 2007, Structure.

[25]  M. Hall,et al.  TOR Signaling in Growth and Metabolism , 2006, Cell.

[26]  G. Fink,et al.  Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration , 2002, Nature.

[27]  Uri Alon,et al.  Varying environments can speed up evolution , 2007, Proceedings of the National Academy of Sciences.

[28]  D. Koller,et al.  Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network , 2008, Nature Biotechnology.

[29]  J. Buhler,et al.  The H2O2 Stimulon in Saccharomyces cerevisiae * , 1998, The Journal of Biological Chemistry.

[30]  George A. Brooks,et al.  Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  U. Sauer,et al.  Metabolic functions of duplicate genes in Saccharomyces cerevisiae. , 2005, Genome research.

[32]  R. Rossignol,et al.  Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. , 2009, Frontiers in bioscience.

[33]  M. Ziegler,et al.  The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. , 2007, The Biochemical journal.

[34]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[35]  Daniel N. Wilson,et al.  The Weird and Wonderful World of Bacterial Ribosome Regulation , 2007, Critical reviews in biochemistry and molecular biology.

[36]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[37]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.

[38]  U. Sauer,et al.  Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast , 2005, Genome Biology.

[39]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[40]  A. Criollo,et al.  The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1 , 2009, Aging.

[41]  Gustavo Caetano-Anollés,et al.  The origin and evolution of modern metabolism. , 2009, The international journal of biochemistry & cell biology.

[42]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[43]  L. Fontana The scientific basis of caloric restriction leading to longer life , 2009, Current opinion in gastroenterology.

[44]  C. Boschek,et al.  Pyruvate kinase type M2 and its role in tumor growth and spreading. , 2005, Seminars in cancer biology.

[45]  H. Llewelyn Roderick,et al.  Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival , 2008, Nature Reviews Cancer.

[46]  B. Palsson,et al.  Metabolic systems biology , 2009, Encyclopedia of Complexity and Systems Science.

[47]  Barbara M. Bakker,et al.  The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels , 2007, Proceedings of the National Academy of Sciences.

[48]  S. Holmes,et al.  SIR2-induced inviability is suppressed by histone H4 overexpression. , 2002, Genetics.

[49]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[50]  C. Buchrieser,et al.  A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes , 2009, Cell.

[51]  E. Stelzer,et al.  A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation , 2009, Nature Structural &Molecular Biology.

[52]  D. Moazed,et al.  An Enzymatic Activity in the Yeast Sir2 Protein that Is Essential for Gene Silencing , 1999, Cell.

[53]  B. Daignan-Fornier,et al.  The isolation and characterization of Saccharomyces cerevisiae mutants that constitutively express purine biosynthetic genes. , 1997, Genetics.

[54]  Axel Kowald,et al.  Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress , 2007, Journal of biology.

[55]  D. Zipser,et al.  The lactose operon , 1970 .

[56]  Stephan Klaus,et al.  Jonathan R. Beckwith and David Zipser, The Lactose Operon. 437 S., 150 Abb., 55 Tab. Cold Spring Harbor Laboratory 1970: Cold Spring Harbor Laboratory $ 14.– , 1973 .

[57]  K. Jensen,et al.  Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. , 1990, Microbiological reviews.

[58]  Alessandro Vespignani,et al.  ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation , 2009 .

[59]  M. Lidstrom,et al.  Flux Analysis Uncovers Key Role of Functional Redundancy in Formaldehyde Metabolism , 2005, PLoS biology.

[60]  C. Colussi,et al.  H2O2‐induced block of glycolysis as an active ADP‐ribosylation reaction protecting cells from apoptosis , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[61]  Russell B Williams,et al.  Epigenetic remodeling of the fungal secondary metabolome. , 2008, Organic & biomolecular chemistry.

[62]  C. Grant,et al.  Metabolic reconfiguration is a regulated response to oxidative stress , 2008, Journal of biology.

[63]  Alexander Schug,et al.  Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. , 2009, Biophysical journal.

[64]  Anat Kreimer,et al.  The evolution of modularity in bacterial metabolic networks , 2008, Proceedings of the National Academy of Sciences.

[65]  S. Ryu,et al.  Glycolytic Flux Signals to mTOR through Glyceraldehyde-3-Phosphate Dehydrogenase-Mediated Regulation of Rheb , 2009, Molecular and Cellular Biology.

[66]  E. Kun,et al.  Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP. , 2004, Biochemistry.

[67]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[68]  Christoph Wittmann,et al.  Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum , 2008, Microbial cell factories.

[69]  U. Alon,et al.  Environmental variability and modularity of bacterial metabolic networks , 2007, BMC Evolutionary Biology.

[70]  A. Yalçin,et al.  Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. , 2009, Experimental and molecular pathology.

[71]  M. Dahl CcpA-independent carbon catabolite repression in Bacillus subtilis. , 2002, Journal of molecular microbiology and biotechnology.

[72]  A. Parekh,et al.  Regulation of Store-Operated Calcium Channels by the Intermediary Metabolite Pyruvic Acid , 2007, Current Biology.

[73]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[74]  J. Nielsen,et al.  Integration of metabolome data with metabolic networks reveals reporter reactions , 2006, Molecular systems biology.

[75]  D. Janero,et al.  Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. , 1994, The American journal of physiology.

[76]  Bernhard O Palsson,et al.  Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. , 2004, Trends in biochemical sciences.