Generalized Gaussian Quadrature Rules for Discontinuities and Crack Singularities in the Extended Finite Element Method

New Gaussian integration schemes are presented for the efficient and accurate evaluation of weak form integrals in the extended finite element method. For discontinuous functions, we construct Gauss-like quadrature rules over arbitrarily-shaped elements in two dimensions without the need for partitioning the finite element. A point elimination algorithm is used in the construction of the quadratures, which ensures that the final quadratures have minimal number of Gauss points. For weakly singular integrands, we apply a polar transformation that eliminates the singularity so that the integration can be performed efficiently and accurately. Numerical examples in elastic fracture using the extended finite element method are presented to illustrate the performance of the new integration techniques.

[1]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[2]  J. Akin The generation of elements with singularities , 1976 .

[3]  W. Gander,et al.  Adaptive Quadrature—Revisited , 2000 .

[4]  D. M. Tracey,et al.  Finite elements for determination of crack tip elastic stress intensity factors , 1971 .

[5]  Simon K. Warfield,et al.  Modelling Surgical Cuts, Retractions, and Resections via Extended Finite Element Method , 2004, MICCAI.

[6]  P. Steinmann,et al.  A finite element method for the computational modelling of cohesive cracks , 2005 .

[7]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[8]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[9]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[10]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[11]  Jean B. Lasserre,et al.  Integration and homogeneous functions , 1999 .

[12]  Eitan Grinspun,et al.  Enrichment textures for detailed cutting of shells , 2009, ACM Trans. Graph..

[13]  M. Schweitzer An adaptive hp-version of the multilevel particle–partition of unity method , 2009 .

[14]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[15]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[16]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[17]  Andreas Zilian,et al.  The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction , 2008 .

[18]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[19]  Adrian J. Lew,et al.  An optimally convergent discontinuous Galerkin‐based extended finite element method for fracture mechanics , 2010 .

[20]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[21]  Hae-Soo Oh,et al.  The smooth piecewise polynomial particle shape functions corresponding to patch-wise non-uniformly spaced particles for meshfree particle methods , 2007 .

[22]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[23]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[24]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[25]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[26]  David R. Noble,et al.  Quadrature rules for triangular and tetrahedral elements with generalized functions , 2008 .

[27]  Glaucio H. Paulino,et al.  Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .

[28]  R. S. Dunham A quadrature rule for conforming quadratic crack tip elements , 1979 .

[29]  J. Solecki,et al.  On quadrature and singular finite elements , 1984 .

[30]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[31]  D. M. Tracey,et al.  Analysis of power type singularities using finite elements , 1977 .

[32]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[33]  T. Baker,et al.  Brittle fracture in polycrystalline microstructures with the extended finite element method , 2003 .

[34]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[35]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[36]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[37]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[38]  Symmetric numerical integral formulas for regular polygons , 1990 .

[39]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[40]  R. Barsoum Application of quadratic isoparametric finite elements in linear fracture mechanics , 1974 .

[41]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[42]  G. Ventura,et al.  A regularized XFEM model for the transition from continuous to discontinuous displacements , 2008 .

[43]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[44]  Pedro Díez,et al.  Hierarchical X-FEM for n-phase flow (n > 2) , 2009 .

[45]  Terje O. Espelid,et al.  DECUHR: an algorithm for automatic integration of singular functions over a hyperrectangular region , 2005, Numerical Algorithms.

[46]  Thomas-Peter Fries,et al.  The intrinsic XFEM for two‐fluid flows , 2009 .

[47]  Benoit Prabel,et al.  Level set X‐FEM non‐matching meshes: application to dynamic crack propagation in elastic–plastic media , 2007 .

[48]  Ted Belytschko,et al.  Fast integration and weight function blending in the extended finite element method , 2009 .

[49]  Alok Sutradhar,et al.  Symmetric Galerkin Boundary Element Method , 2008 .

[50]  Zydrunas Gimbutas,et al.  A numerical algorithm for the construction of efficient quadrature rules in two and higher dimensions , 2010, Comput. Math. Appl..

[51]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[52]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[53]  Bhushan Lal Karihaloo,et al.  Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .

[54]  Julien Réthoré,et al.  An energy‐conserving scheme for dynamic crack growth using the eXtended finite element method , 2005 .

[55]  Patrick Laborde,et al.  Crack tip enrichment in the XFEM using a cutoff function , 2008 .

[56]  Subrata Mukherjee,et al.  A mapping method for numerical evaluation of two-dimensional integrals with 1/r singularity , 1993 .

[57]  Lenka Jerábková,et al.  Stable Cutting of Deformable Objects in Virtual Environments Using XFEM , 2009, IEEE Computer Graphics and Applications.

[58]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[59]  Ted Belytschko,et al.  Discontinuous enrichment in finite elements with a partition of unity method , 2000 .

[60]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[61]  Simon K. Warfield,et al.  On Extended Finite Element Method (XFEM) for Modelling of Organ Deformations Associated with Surgical Cuts , 2004, ISMS.

[62]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[63]  Michael Griebel,et al.  A Particle-Partition of Unity Method-Part II: Efficient Cover Construction and Reliable Integration , 2001, SIAM J. Sci. Comput..

[64]  Carlos Armando Duarte,et al.  A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .

[65]  E. Becker,et al.  A conforming crack tip element with quadratic variation in the singular fields , 1978 .

[66]  M. Jirásek,et al.  Process zone resolution by extended finite elements , 2003 .

[67]  Anna-Karin Tornberg,et al.  Multi-Dimensional Quadrature of Singular and Discontinuous Functions , 2002 .

[68]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[69]  N. Sukumar,et al.  Generalized Duffy transformation for integrating vertex singularities , 2009 .

[70]  I. L. Lim,et al.  Application of singular quadratic distorted isoparametric elements in linear fracture mechanics , 1993 .

[71]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[72]  J. N. Lyness On Handling Singularities in Finite Elements , 1992 .

[73]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[74]  Jean B. Lasserre,et al.  Integration on a convex polytope , 1998 .

[75]  D. P. Rooke,et al.  Mixed-mode Bueckner weight functions using boundary element analysis , 1987 .

[76]  N. Sukumar,et al.  Finite element-based model for crack propagation in polycrystalline materials , 2004 .

[77]  T. Belytschko,et al.  The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns , 2006 .

[78]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[79]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .