1 OBJECT-ORIENTED FRAMEWORK FOR MODELLING AND SIMULATION OF PROPAGATION PROCESSES : APPLICATION TO A FIRE SPREADING

An important class of ecological problems concerns propagation processes. In ecological modelling, these phenomena generally occur on large scales and are generally difficult to efficiently simulate because of the number of entities and connections between entities. Studies of this kind of phenomena lack genericity and reusability because they are often presented through the point of view of a single domain expert. Simulations made by domain experts seem to lack genericity for computer science specialists and simulations developed by computer science specialists seem not to grasp modelling terminology and problems of the domain experts. We propose here a general object-oriented framework for modelling and simulation of propagation processes. Object-oriented techniques allow to provide genericity and re-usability. From modelling to simulation, the Unified Modeling Language (UML) provides a common means of communication between computer science specialists and domain experts. The Model Driven Architecture (MDA) is used to improve object-oriented methodology. Simulation optimisations are defined for implicit and explicit models of propagation. The approach is applied to the modelling and simulation of fire spread. Starting from wildland fire problems, specification levels are used to gradually specify a fire spread simulator. Each level of the study is specified in UML and thus can be reused in another wildland fire problem.

[1]  J. Dupuy,et al.  Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects , 1999 .

[2]  P. Coquillard Simulation of the cyclical process of heathlands: induction of mosaic structures, evolution to irreversible states , 1995 .

[3]  D. Dunkerley Banded chenopod shrublands of arid Australia: modelling responses to interannual rainfall variability with cellular automata , 1999 .

[4]  Daoyi Chen,et al.  An object-oriented tool for the control of point-source pollution in river systems , 2000, Environ. Model. Softw..

[5]  Paul A. Fishwick,et al.  Simulation model design and execution - building digital worlds , 1995 .

[6]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[7]  John N. Buxton,et al.  Control and Simulation Language , 1962, Comput. J..

[8]  D. L. Scarnecchia,et al.  Fundamentals of Ecological Modelling , 1995 .

[9]  D. E. Hill,et al.  An algorithmic model for invasive species: Application to Caulerpa taxifolia (Vahl) C. Agardh development in the North-Western Mediterranean Sea , 1998 .

[10]  Jean Bézivin,et al.  Weaving definition and execution aspects of process meta-models , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[11]  Niels Holst,et al.  Object-oriented implementation of the metabolic pool model , 1997 .

[12]  W. Hargrove,et al.  Simulating fire patterns in heterogeneous landscapes , 2000 .

[13]  B. Soares-Filho,et al.  dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier , 2002 .

[14]  Thomas Worsch,et al.  Simulation of cellular automata , 1999, Future Gener. Comput. Syst..

[15]  T. Pukkala Effect of spatial distribution of trees on the volume increment of a young Scots pine stand. , 1988 .

[16]  J. Stephens,et al.  Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Bryan R. Pearce,et al.  A C++ implementation of an individual/landscape model , 1997 .

[18]  M. Larini,et al.  A multiphase formulation for fire propagation in heterogeneous combustible media , 1998 .

[19]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[20]  A. M. G. Lopes,et al.  FireStation - an integrated software system for the numerical simulation of fire spread on complex topography , 2002, Environ. Model. Softw..

[21]  R. Weber,et al.  Analytical models for fire spread due to radiation , 1989 .

[22]  John W. Hearne,et al.  An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system , 2002 .

[23]  Gabriel A. Wainer,et al.  Comparing simulation methods for fire spreading across a fuel bed , 2002 .

[24]  N. D. Stone,et al.  Object-oriented simulation: plant growth and discrete organ to organ interactions , 1991 .

[25]  Greg P. Laughlin,et al.  The rainfall reliability wizard--a new tool to rapidly analyse spatial rainfall reliability with examples , 2003, Environ. Model. Softw..

[26]  K. Rutchey,et al.  Fire simulations in the Everglades Landscape using parallel programming , 1996 .

[27]  André M. C. Campos,et al.  An agent-based framework for visual-interactive ecosystem simulations , 1998 .

[28]  B. Breckling,et al.  Current trends in ecological modelling and the 8th ISEM conference on the state-of-the-art , 1994 .

[29]  J. M. Baveco,et al.  An object-oriented tool for individual-oriented simulation : host-parasitoid system application , 1992 .

[30]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[31]  Claude Mazel,et al.  Integrating VandV in the object-oriented life cycle of ecological modelling simulation projects , 1996 .

[32]  David R. Hill,et al.  Object-Oriented Analysis and Simulation , 1996 .

[33]  Gabriel A. Wainer,et al.  Models of complex physical systems using Cell-DEVS , 2001, Proceedings. 34th Annual Simulation Symposium.

[34]  William Silvert,et al.  Object-oriented ecosystem modelling , 1993 .

[35]  R. B. Whitner,et al.  Guidelines for selecting and using simulation model verification techniques , 1989, WSC '89.

[36]  Paul A. Fishwick,et al.  A multimodeling basis for across-trophic-level ecosystem modeling: the Florida Everglades example , 1998 .

[37]  M. Spencer The effects of habitat size and energy on food web structure: An individual-based cellular automata model , 1997 .

[38]  D. Albright,et al.  Classification of fire simulation systems , 1999 .

[39]  Bjarne Stroustrup,et al.  The C++ Programming Language: Special Edition , 2000 .

[40]  F. Albini A Model for Fire Spread in Wildland Fuels by-Radiation† , 1985 .

[41]  L. Yang,et al.  Integration of a 1-D river model with object-oriented methodology , 2002, Environ. Model. Softw..

[42]  Michael Sonnenschein,et al.  Object-oriented support for modelling and simulation of individual-oriented ecological models , 1998 .

[43]  P. Santoni Propagation de feux de foret modelisation dynamique et resolution numerique, validation sur des feux de litiere , 1996 .

[44]  G. Richards An elliptical growth model of forest fire fronts and its numerical solution , 1990 .

[45]  Jean Bézivin,et al.  From Object Composition to Model Transformation with the MDA , 2001, TOOLS.

[46]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[47]  Jay D. Miller,et al.  Modeling fire in semi-desert grassland/oak woodland: the spatial implications , 2002 .

[48]  Patrick Coquillard,et al.  Design of an ecosystem modelling environment application to forest growth simulation , 1994 .

[49]  G. A. Jordan,et al.  Object-oriented abstraction of contemporary forest management design , 2001 .

[50]  Samira El Yacoubi,et al.  LUCAS: an original tool for landscape modelling , 2003, Environ. Model. Softw..

[51]  Knut Alfredsen,et al.  An object-oriented application framework for building water resource information and planning tools applied to the design of a flood analysis system , 2000, Environ. Model. Softw..

[52]  P. Fishwick Submission for Special Issue on Model Specification & Representation for Acm Transactions on Modeling and Computer Simulation Extending Object-oriented Design for Physical Modeling Extending Object-oriented Design for Physical Modeling , 1996 .

[53]  Jean François Santucci,et al.  Optimization of cell spaces simulation for the modeling of fire spreading , 2003, 36th Annual Simulation Symposium, 2003..

[54]  David R. C. Hill,et al.  Multi-agent simulation of group foraging in sheep: effects of spatial memory, conspecific attraction and plot size , 2001 .

[55]  Bernard P. Zeigler,et al.  Multifacetted Modelling and Discrete Event Simulation , 1984 .

[56]  Jia-Lin Chen,et al.  GePSi: A generic plant simulator based on object-oriented principles , 1997 .

[57]  P. Auger,et al.  Propagation of extinction waves in spatial models of interspecific competition and selective predation , 1993 .

[58]  J. Balbi,et al.  Dynamic modelling of fire spread across a fuel bed , 1999 .

[59]  P. G. Neil,et al.  Integration of legacy sub-system components into an object-oriented simulation model of a complete pastoral dairy farm , 1999, Environ. Model. Softw..

[60]  P. Laval The representation of space in an object-oriented computational pelagic ecosystem , 1996 .

[61]  M. Traoré,et al.  Réflexion sur la Théorie de la Simulation, Le statut épistémologique de la simulation , 2003 .

[62]  John R. Coleman,et al.  A real-time computer application for the prediction of fire spread across the Australian landscape , 1996, Simul..

[63]  Helen Couclelis,et al.  Cellular Worlds: A Framework for Modeling Micro—Macro Dynamics , 1985 .

[64]  Michael Pidd,et al.  Computer Simulation in Management Science (3rd Edition) , 1998 .

[65]  J. Goguen,et al.  Systems and Distinctions; Duality and Complementarity , 1979 .

[66]  Tanja Tötzer,et al.  Modeling growth and densification processes in sub-urban regions – simulation of landscape transition with spatial agents , 2005 .

[67]  G. Sirakoulis,et al.  A cellular automaton model for the effects of population movement and vaccination on epidemic propagation , 2000 .

[68]  Derek M. Causon,et al.  Towards simulating urban canyon circulations with a 2D lattice Boltzmann model , 2003, Environ. Model. Softw..