Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics
暂无分享,去创建一个
Tomasz Lipniacki | Michal Komorowski | Michal Wlodarczyk | Karol Nienaltowski | T. Lipniacki | Karol Nienałtowski | M. Komorowski | Michał Włodarczyk
[1] Zuyi Huang,et al. Model simplification procedure for signal transduction pathway models: An application to IL-6 signaling , 2010 .
[2] Don H. Johnson,et al. Statistical Signal Processing , 2009, Encyclopedia of Biometrics.
[3] Richard A. Johnson. Asymptotic Expansions Associated with Posterior Distributions , 1970 .
[4] Marek Kimmel,et al. Single TNFα trimers mediating NF-κB activation: stochastic robustness of NF-κB signaling , 2007, BMC Bioinformatics.
[5] Pu Li,et al. Identification of parameter correlations for parameter estimation in dynamic biological models , 2013, BMC Systems Biology.
[6] Juergen Hahn,et al. Parameter set selection for estimation of nonlinear dynamic systems , 2007 .
[7] J. Timmer,et al. Systems biology: experimental design , 2009, The FEBS journal.
[8] Michael P. H. Stumpf,et al. StochSens - matlab package for sensitivity analysis of stochastic chemical systems , 2012, Bioinform..
[9] Oliver Medvedik,et al. Stimulus Specificity of Gene Expression Programs Determined by Temporal Control of IKK Activity , 2013 .
[10] A. Hoffmann,et al. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.
[11] Michael Karin,et al. Positive and Negative Regulation of IκB Kinase Activity Through IKKβ Subunit Phosphorylation , 1999 .
[12] A. Ma,et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. , 2000, Science.
[13] K. S. Brown,et al. Statistical mechanical approaches to models with many poorly known parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] K. H. Lee,et al. The statistical mechanics of complex signaling networks: nerve growth factor signaling , 2004, Physical biology.
[15] A. Hoffmann,et al. The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .
[16] E Ayesa,et al. Numerical and graphical description of the information matrix in calibration experiments for state-space models. , 2001, Water research.
[17] S. Moolgavkar,et al. A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .
[18] James R. Johnson,et al. Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.
[19] Peter A. J. Hilbers,et al. A Bayesian approach to targeted experiment design , 2012, Bioinform..
[20] Michael P. H. Stumpf,et al. Maximizing the Information Content of Experiments in Systems Biology , 2013, PLoS Comput. Biol..
[21] J. Banga,et al. Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.
[22] D B Kell,et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.
[23] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[24] Timothy K Lee,et al. Single-cell NF-κB dynamics reveal digital activation and analogue information processing , 2010, Nature.
[25] Andrew J. Millar,et al. Reconstruction of transcriptional dynamics from gene reporter data using differential equations , 2008, Bioinform..
[26] Johan Karlsson,et al. Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..
[27] Jim Kay,et al. Feature discovery under contextual supervision using mutual information , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.
[28] D A Rand,et al. Design principles underlying circadian clocks , 2004, Journal of The Royal Society Interface.
[29] E. Gilles,et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.
[30] David A. Rand,et al. Quantifying intrinsic and extrinsic noise in gene transcription using the linear noise approximation: An application to single cell data , 2013, 1401.1640.
[31] Juergen Hahn,et al. Generalization of a parameter set selection procedure based on orthogonal projections and the D-optimality criterion , 2012 .
[32] Marek Kimmel,et al. Mathematical model of NF- κB regulatory module , 2004 .
[33] H. Künsch,et al. Practical identifiability analysis of large environmental simulation models , 2001 .
[34] Ursula Klingmüller,et al. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..
[35] Juergen Hahn,et al. Parameter Set Selection via Clustering of Parameters into Pairwise Indistinguishable Groups of Parameters , 2009 .
[36] .. W. V. Der,et al. On Profile Likelihood , 2000 .
[37] Maksat Ashyraliyev,et al. Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.
[38] D A Rand,et al. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law , 2008, Journal of The Royal Society Interface.
[39] D. S. Broomhead,et al. Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription , 2009, Science.
[40] A. Hoffmann,et al. Encoding NF- (cid:1) B temporal control in response to TNF: distinct roles for the negative regulators I (cid:1) B (cid:2) and A20 , 2008 .
[41] Michael P H Stumpf,et al. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models , 2011, Proceedings of the National Academy of Sciences.
[42] Kamil Erguler,et al. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. , 2011, Molecular bioSystems.
[43] Christopher R. Myers,et al. Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..
[44] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.