Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics

BackgroundCompared to engineering or physics problems, dynamical models in quantitative biology typically depend on a relatively large number of parameters. Progress in developing mathematics to manipulate such multi-parameter models and so enable their efficient interplay with experiments has been slow. Existing solutions are significantly limited by model size.ResultsIn order to simplify analysis of multi-parameter models a method for clustering of model parameters is proposed. It is based on a derived statistically meaningful measure of similarity between groups of parameters. The measure quantifies to what extend changes in values of some parameters can be compensated by changes in values of other parameters. The proposed methodology provides a natural mathematical language to precisely communicate and visualise effects resulting from compensatory changes in values of parameters. As a results, a relevant insight into identifiability analysis and experimental planning can be obtained. Analysis of NF- κB and MAPK pathway models shows that highly compensative parameters constitute clusters consistent with the network topology. The method applied to examine an exceptionally rich set of published experiments on the NF- κB dynamics reveals that the experiments jointly ensure identifiability of only 60 % of model parameters. The method indicates which further experiments should be performed in order to increase the number of identifiable parameters.ConclusionsWe currently lack methods that simplify broadly understood analysis of multi-parameter models. The introduced tools depict mutually compensative effects between parameters to provide insight regarding role of individual parameters, identifiability and experimental design. The method can also find applications in related methodological areas of model simplification and parameters estimation.

[1]  Zuyi Huang,et al.  Model simplification procedure for signal transduction pathway models: An application to IL-6 signaling , 2010 .

[2]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[3]  Richard A. Johnson Asymptotic Expansions Associated with Posterior Distributions , 1970 .

[4]  Marek Kimmel,et al.  Single TNFα trimers mediating NF-κB activation: stochastic robustness of NF-κB signaling , 2007, BMC Bioinformatics.

[5]  Pu Li,et al.  Identification of parameter correlations for parameter estimation in dynamic biological models , 2013, BMC Systems Biology.

[6]  Juergen Hahn,et al.  Parameter set selection for estimation of nonlinear dynamic systems , 2007 .

[7]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[8]  Michael P. H. Stumpf,et al.  StochSens - matlab package for sensitivity analysis of stochastic chemical systems , 2012, Bioinform..

[9]  Oliver Medvedik,et al.  Stimulus Specificity of Gene Expression Programs Determined by Temporal Control of IKK Activity , 2013 .

[10]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[11]  Michael Karin,et al.  Positive and Negative Regulation of IκB Kinase Activity Through IKKβ Subunit Phosphorylation , 1999 .

[12]  A. Ma,et al.  Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. , 2000, Science.

[13]  K. S. Brown,et al.  Statistical mechanical approaches to models with many poorly known parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  K. H. Lee,et al.  The statistical mechanics of complex signaling networks: nerve growth factor signaling , 2004, Physical biology.

[15]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[16]  E Ayesa,et al.  Numerical and graphical description of the information matrix in calibration experiments for state-space models. , 2001, Water research.

[17]  S. Moolgavkar,et al.  A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .

[18]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[19]  Peter A. J. Hilbers,et al.  A Bayesian approach to targeted experiment design , 2012, Bioinform..

[20]  Michael P. H. Stumpf,et al.  Maximizing the Information Content of Experiments in Systems Biology , 2013, PLoS Comput. Biol..

[21]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[22]  D B Kell,et al.  Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.

[23]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[24]  Timothy K Lee,et al.  Single-cell NF-κB dynamics reveal digital activation and analogue information processing , 2010, Nature.

[25]  Andrew J. Millar,et al.  Reconstruction of transcriptional dynamics from gene reporter data using differential equations , 2008, Bioinform..

[26]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[27]  Jim Kay,et al.  Feature discovery under contextual supervision using mutual information , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[28]  D A Rand,et al.  Design principles underlying circadian clocks , 2004, Journal of The Royal Society Interface.

[29]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[30]  David A. Rand,et al.  Quantifying intrinsic and extrinsic noise in gene transcription using the linear noise approximation: An application to single cell data , 2013, 1401.1640.

[31]  Juergen Hahn,et al.  Generalization of a parameter set selection procedure based on orthogonal projections and the D-optimality criterion , 2012 .

[32]  Marek Kimmel,et al.  Mathematical model of NF- κB regulatory module , 2004 .

[33]  H. Künsch,et al.  Practical identifiability analysis of large environmental simulation models , 2001 .

[34]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[35]  Juergen Hahn,et al.  Parameter Set Selection via Clustering of Parameters into Pairwise Indistinguishable Groups of Parameters , 2009 .

[36]  .. W. V. Der,et al.  On Profile Likelihood , 2000 .

[37]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[38]  D A Rand,et al.  Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law , 2008, Journal of The Royal Society Interface.

[39]  D. S. Broomhead,et al.  Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription , 2009, Science.

[40]  A. Hoffmann,et al.  Encoding NF- (cid:1) B temporal control in response to TNF: distinct roles for the negative regulators I (cid:1) B (cid:2) and A20 , 2008 .

[41]  Michael P H Stumpf,et al.  Sensitivity, robustness, and identifiability in stochastic chemical kinetics models , 2011, Proceedings of the National Academy of Sciences.

[42]  Kamil Erguler,et al.  Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. , 2011, Molecular bioSystems.

[43]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[44]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.