Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus

The recent appreciation of the fact that the pulvinar and lateral posterior (LP) nuclei receive two distinct types of cortical input has sparked renewed interest in this region of the thalamus. A key question is whether the primary or “driving” inputs to the pulvinar/LP complex originate in cortical or subcortical areas. To begin to address this issue, we examined the synaptic targets of tectothalamic terminals within the LP nucleus. Tectothalamic terminals were labeled using the anterograde transport of biotinylated dextran amine (BDA) or Phaselous leucoagglutinin placed in the superior colliculus or using immunocytochemical staining for substance P, a neurotransmitter found to be used by the tectothalamic pathway (Hutsler and Chalupa [ 1991 ] J. Comp. Neurol. 312:379–390). Our results suggest that most tectothalamic terminals are large and occupy a proximal position on the dendritic arbor of LP relay cells. In the medial LP, tectothalamic terminals labeled by the transport of neuronal tracers or substance P immunocytochemistry can form tubular clusters that surround the proximal dendrites of relay cells. In a rostral and lateral subdivision of the lateral LP nucleus (LPl‐2), tectothalamic terminals form more typical glomerular arrangements. When compared with existing physiological data, these results suggest that a unique integration of tectal and cortical inputs may contribute to the response properties of LP neurons. J. Comp. Neurol. 464:472–486, 2003. © 2003 Wiley‐Liss, Inc.

[1]  J. Szentágothai,et al.  The large glomerular synapse of the pulvinar. , 1965, Journal fur Hirnforschung.

[2]  J. Sprague,et al.  Interaction of Cortex and Superior Colliculus in Mediation of Visually Guided Behavior in the Cat , 1966, Science.

[3]  T. Powell,et al.  An electron microscopic study of the mode of termination of cortico-thalamic fibres within the sensory relay nuclei of the thalamus , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  G. Schneider Two visual systems. , 1969, Science.

[5]  W. C. Hall,et al.  Evolution of neocortex. , 1969, Science.

[6]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[7]  E. V. Famiglietti,et al.  The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat , 1972, The Journal of comparative neurology.

[8]  A. Graybiel Some extrageniculate visual pathways in the cat. , 1972, Investigative ophthalmology.

[9]  F. Hajdu,et al.  Neuronal and synaptic arrangement in the lateralis posterior-pulvinar complex of the thalamus in the cat. , 1974, Brain research.

[10]  L. Benevento,et al.  The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta) , 1975, The Journal of comparative neurology.

[11]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[12]  J. Graham An autoradiographic study of the efferent connections of the superior colliculus in the cat , 1977, The Journal of comparative neurology.

[13]  M. Colonnier,et al.  Thalamic projections of the superior colliculus in the rhesus monkey, Macaca mulatta. A light and electron microscopic study , 1977, The Journal of comparative neurology.

[14]  W. C. Hall,et al.  The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). II. Synaptic organization and comparisons with the dorsal lateral geniculate nucleus , 1977, The Journal of comparative neurology.

[15]  Ann M. Graybiel,et al.  Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections , 1978, Brain Research.

[16]  C. Mason,et al.  The synaptic organization of terminals traced from individual labeled retino-geniculate axons in the cat , 1979, Neuroscience.

[17]  W. C. Hall,et al.  The normal organization of the lateral posterior nucleus of the golden hamster , 1980, The Journal of comparative neurology.

[18]  M. Kudo,et al.  Laminar segregation of cells of origin of ascending projections from the superficial layers of the superior colliculus in the cat , 1980, Brain Research.

[19]  A. Graybiel,et al.  Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat , 1980, Neuroscience.

[20]  R. Mize,et al.  Superior colliculus neurons which project to the cat lateral posterior nucleus have varying morphologies , 1981, The Journal of comparative neurology.

[21]  B. V. Updyke,et al.  Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat , 1981, The Journal of comparative neurology.

[22]  R. Williams,et al.  Visual response properties in the tectorecipient zone of the cat's lateral posterior-pulvinar complex: a comparison with the superior colliculus , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  A. Rosenquist,et al.  Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[25]  R. M. Beckstead The thalamostriatal projection in the cat , 1984, The Journal of comparative neurology.

[26]  S. Rapisardi,et al.  Synaptology of retinal terminals in the dorsal lateral geniculate nucleus of the cat , 1984, The Journal of comparative neurology.

[27]  R. M. Beckstead A projection to the striatum from the medial subdivision of the posterior group of the thalamus in the cat , 1984, Brain Research.

[28]  L. Chalupa,et al.  The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus , 1985, Neuroscience.

[29]  Y. Katoh,et al.  Cortical and tectal afferent terminals in the suprageniculate nucleus of the cat , 1986, Neuroscience Letters.

[30]  R. Mooney,et al.  The structural and functional characteristics of striate cortical neurons that innervate the superior colliculus and lateral posterior nucleus in hamster , 1986, Neuroscience.

[31]  M. Posner,et al.  Deficits in human visual spatial attention following thalamic lesions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[33]  S. Petersen,et al.  Contributions of the pulvinar to visual spatial attention , 1987, Neuropsychologia.

[34]  D. B. Bender Electrophysiological and behavioral experiments on the primate pulvinar. , 1988, Progress in brain research.

[35]  R. Mize,et al.  Immunocytochemical localization of gamma‐aminobutyric acid (GABA) in the cat superior colliculus , 1988, The Journal of comparative neurology.

[36]  J. Bolz,et al.  Morphology of identified projection neurons in layer 5 of rat visual cortex , 1988, Neuroscience Letters.

[37]  L. Chalupa,et al.  Receptive-field properties in the tecto- and striate-recipient zones of the cat's lateral posterior nucleus. , 1988, Progress in brain research.

[38]  C R Olson,et al.  Visual and auditory association areas of the cat's posterior ectosylvian gyrus: Thalamic afferents , 1988, The Journal of comparative neurology.

[39]  L. Chalupa,et al.  Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat , 1988, The Journal of comparative neurology.

[40]  R D Freeman,et al.  Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. , 1989, Journal of neurophysiology.

[41]  L M Chalupa,et al.  Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[43]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[44]  L. Chalupa,et al.  Substance P immunoreactivity identifies a projection from the cat's superior colliculus to the principal tectorecipient zone of the lateral posterior nucleus , 1991, The Journal of comparative neurology.

[45]  D. B. Bender,et al.  Selectivity for relative motion in the monkey superior colliculus. , 1991, Journal of neurophysiology.

[46]  J. K. Harting,et al.  Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species , 1991, The Journal of comparative neurology.

[47]  A. Leventhal The neural basis of visual function , 1991 .

[48]  M. Cynader,et al.  Preferential innervation of immunoreactive choline acetyltransferase synapses on relay cells of the cat's lateral geniculate nucleus: A double-labelling study , 1992, Neuroscience.

[49]  S. Petersen,et al.  The pulvinar and visual salience , 1992, Trends in Neurosciences.

[50]  C. Jeon,et al.  The calcium binding proteins parvalbumin and calbindin‐D 28K form complementary patterns in the cat superior colliculus , 1992, The Journal of comparative neurology.

[51]  C. Batini,et al.  Glutamate, GABA, calbindin-D28k and parvalbumin immunoreactivity in the pulvinar-lateralis posterior complex of the cat: relation to the projection to the Clare-Bishop area , 1993, Neuroscience Letters.

[52]  J. Hámori,et al.  Quantitative electron microscopic analysis of synaptic input from cortical areas 17 and 18 to the dorsal lateral geniculate nucleus in cats , 1994, The Journal of comparative neurology.

[53]  S G Lomber,et al.  Reversible inactivation of visual processing operations in middle suprasylvian cortex of the behaving cat. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[54]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[55]  G. Benedek,et al.  Organization of the colliculo‐suprageniculate pathway in the cat: A wheat germ agglutinin‐horseradish peroxidase study , 1995, The Journal of comparative neurology.

[56]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[57]  F. Reinoso-suárez,et al.  Afferent connections of the lateralis medialis thalamic nucleus in the cat , 1995, Brain Research Bulletin.

[58]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[59]  S G Lomber,et al.  Reversible visual hemineglect. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  S. Sherman,et al.  Ultrastructural Localization Suggests that Retinal and Cortical Inputs Access Different Metabotropic Glutamate Receptors in the Lateral Geniculate Nucleus , 1996, The Journal of Neuroscience.

[61]  C. Blakemore,et al.  Visual motion processing in the anterior ectosylvian sulcus of the cat. , 1996, Journal of neurophysiology.

[62]  S G Lomber,et al.  Removal of two halves restores the whole: Reversal of visual hemineglect during bilateral cortical or collicular inactivation in the cat , 1996, Visual Neuroscience.

[63]  H. Ojima,et al.  Dual termination modes of corticothalamic fibers originating from pyramids of layers 5 and 6 in cat visual cortical area 17 , 1996, Neuroscience Letters.

[64]  G. Schneider,et al.  Afferents from the colliculus, cortex, and retina have distinct terminal morphologies in the lateral posterior thalamic nucleus , 1997, The Journal of comparative neurology.

[65]  M. Bickford,et al.  Synaptic targets of cholinergic terminals in the pulvinar nucleus of the cat , 1997, The Journal of comparative neurology.

[67]  S. Sherman,et al.  Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals , 1997, The Journal of comparative neurology.

[68]  S. Sherman,et al.  Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons , 1998, The Journal of comparative neurology.

[69]  F. Lo,et al.  Physiological properties of neurons in the optic layer of the rat's superior colliculus. , 1998, Journal of neurophysiology.

[70]  J. K. Harting,et al.  Corticocortical communication via the thalamus: Ultrastructural studies of corticothalamic projections from area 17 to the lateral posterior nucleus of the cat and inferior pulvinar nucleus of the owl monkey , 1998, The Journal of comparative neurology.

[71]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Matthias Schmidt,et al.  Correlation of electrophysiology, morphology, and functions in corticotectal and corticopretectal projection neurons in rat visual cortex , 1998, Experimental Brain Research.

[73]  Lotfi B. Merabet,et al.  Motion integration in a thalamic visual nucleus , 1998, Nature.

[74]  S G Lomber,et al.  Contributions of cat posterior parietal cortex to visuospatial discrimination , 2000, Visual Neuroscience.

[75]  B. V. Updyke,et al.  The visual-oculomotor striatum of the cat: functional relationship to the superior colliculus , 2000, Experimental Brain Research.

[76]  B. V. Updyke,et al.  Striatal projections from the cat visual thalamus , 2001, The European journal of neuroscience.

[77]  R W Guillery,et al.  Connections of higher order visual relays in the thalamus: A study of corticothalamic pathways in cats , 2001, The Journal of comparative neurology.

[78]  M. Bickford,et al.  Y retinal terminals contact interneurons in the cat dorsal lateral geniculate nucleus , 2001, The Journal of comparative neurology.

[79]  M. Bickford,et al.  Relative distribution of synapses in the pulvinar nucleus of the cat: Implications regarding the “driver/modulator” theory of thalamic function , 2002, The Journal of comparative neurology.

[80]  M. Bickford,et al.  Distinct firing properties of higher order thalamic relay neurons. , 2003, Journal of neurophysiology.

[81]  M. Bickford,et al.  Comparison of the ultrastructure of cortical and retinal terminals in the rat dorsal lateral geniculate and lateral posterior nuclei , 2003, The Journal of comparative neurology.

[82]  M. Bickford,et al.  Inhibitory circuitry involving Y cells and Y retinal terminals in the C laminae of the cat dorsal lateral geniculate nucleus , 2003, The Journal of comparative neurology.

[83]  R. W. Guillery,et al.  The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[84]  J. Hámori,et al.  GABA-containing neuronal processes in normal and cortically deafferented dorsal lateral geniculate nucleus of the cat: an immunogold and quantitative EM study , 2004, Experimental Brain Research.

[85]  S. Molotchnikoff,et al.  Influence of the superior colliculus on visual responses of cells in the rabbit's lateral posterior nucleus , 2004, Experimental Brain Research.

[86]  F. A. Geneser-Jensen Distribution of acetyl cholinesterase in the hippocampal region of the guinea pig , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[87]  O. D. Creutzfeldt,et al.  Connections of the anterior ectosylvian visual area (AEV) , 2004, Experimental Brain Research.

[88]  C. Casanova Response properties of neurons in area 17 projecting to the striate-recipient zone of the cat's lateralis posterior-pulvinar complex: comparison with cortico-tectal cells , 2004, Experimental Brain Research.

[89]  D. B. Bender,et al.  Effect of corticotectal tract lesions on relative motion selectivity in the monkey superior colliculus , 2004, Experimental Brain Research.

[90]  W. Singer,et al.  Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat , 2004, Experimental Brain Research.

[91]  M. Fabre-Thorpe,et al.  Role of the extra-geniculate pathway in visual guidance , 2004, Experimental Brain Research.

[92]  Z. Vidnyánszky,et al.  Light and electron microscopic analysis of synaptic input from cortical area 17 to the lateral posterior nucleus in cats , 1996, Experimental Brain Research.