A new local property of strong n-surfaces

Abstract In Bertrand and Malgouyres (1996), two characterizations of discrete surfaces of Z 3 are proposed which are called strong 18- surfaces and strong 26- surfaces . However, strong surfaces are defined by global properties and the question of their local characterization remains. We propose a new local characterization of those of the separating and thin objects which are strong surfaces.

[1]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[2]  Rémy Malgouyres Local characterization of strong surfaces within strongly separating objects , 1998, Pattern Recognit. Lett..

[3]  Gilles Bertrand,et al.  Complete Local Characterization of Strong 26-Surfaces: Continuous Analogs for Strong 26-Surfaces , 1999, Int. J. Pattern Recognit. Artif. Intell..

[4]  Rémy Malgouyres There is no Local Characterization of Separating and Thin Objects in Z³ , 1996, Theor. Comput. Sci..

[5]  Azriel Rosenfeld,et al.  Recognition of Surfaces in Three-Dimensional Digital Images , 1982, Inf. Control..

[6]  Gabor T. Herman,et al.  Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..

[7]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[8]  Gilles Bertrand,et al.  Sufficient conditions for 3D parallel thinning algorithms , 1995, Optics & Photonics.

[9]  Gilles Bertrand,et al.  A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.

[10]  Gilles Bertrand,et al.  Some topological properties of discrete surfaces , 1996, DGCI.

[11]  Gilles Bertrand,et al.  On P-simple points , 1995 .

[12]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[13]  Rémy Malgouyres A Definition of Surfaces of Z: A new 3D Discrete Jordan Theorem , 1997, Theor. Comput. Sci..

[14]  T. Yung Kong,et al.  On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..