A new local property of strong n-surfaces
暂无分享,去创建一个
[1] Gilles Bertrand,et al. Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..
[2] Rémy Malgouyres. Local characterization of strong surfaces within strongly separating objects , 1998, Pattern Recognit. Lett..
[3] Gilles Bertrand,et al. Complete Local Characterization of Strong 26-Surfaces: Continuous Analogs for Strong 26-Surfaces , 1999, Int. J. Pattern Recognit. Artif. Intell..
[4] Rémy Malgouyres. There is no Local Characterization of Separating and Thin Objects in Z³ , 1996, Theor. Comput. Sci..
[5] Azriel Rosenfeld,et al. Recognition of Surfaces in Three-Dimensional Digital Images , 1982, Inf. Control..
[6] Gabor T. Herman,et al. Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..
[7] Azriel Rosenfeld,et al. Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..
[8] Gilles Bertrand,et al. Sufficient conditions for 3D parallel thinning algorithms , 1995, Optics & Photonics.
[9] Gilles Bertrand,et al. A Boolean characterization of three-dimensional simple points , 1996, Pattern Recognition Letters.
[10] Gilles Bertrand,et al. Some topological properties of discrete surfaces , 1996, DGCI.
[11] Gilles Bertrand,et al. On P-simple points , 1995 .
[12] Azriel Rosenfeld,et al. Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..
[13] Rémy Malgouyres. A Definition of Surfaces of Z: A new 3D Discrete Jordan Theorem , 1997, Theor. Comput. Sci..
[14] T. Yung Kong,et al. On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..