Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method
暂无分享,去创建一个
[1] P. Davis. Interpolation and approximation , 1965 .
[2] Michael B. Giles. Multilevel Monte Carlo methods , 2015, Acta Numerica.
[3] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[4] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[5] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[6] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[7] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[8] Klaus Ritter,et al. Multilevel Monte Carlo Approximation of Distribution Functions and Densities , 2015, SIAM/ASA J. Uncertain. Quantification.
[9] L. Shapley,et al. Geometry of Moment Spaces , 1953 .
[10] Kody J. H. Law,et al. Multilevel ensemble Kalman filtering , 2015, SIAM J. Numer. Anal..
[11] R. Mnatsakanov. Hausdorff moment problem: Reconstruction of distributions , 2008 .
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] Jonathan M. Borwein,et al. Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..
[14] Alexey Chernov,et al. Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo method , 2016 .
[15] Aldo Tagliani,et al. Numerical aspects of finite Hausdorff moment problem by maximum entropy approach , 2001, Appl. Math. Comput..
[16] J. Borwein,et al. Duality relationships for entropy-like minimization problems , 1991 .
[17] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.
[18] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[19] Alexey Chernov,et al. Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.
[20] Ralf Kornhuber,et al. Multilevel Monte Carlo Finite Element Methods for Stochastic Elliptic Variational Inequalities , 2014, SIAM J. Numer. Anal..
[21] Jonas Sukys,et al. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions , 2012, J. Comput. Phys..
[22] Gerassimos A. Athanassoulis,et al. The truncated Hausdorff moment problem solved by using kernel density functions , 2002 .
[23] A. Barron,et al. APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .
[24] Assyr Abdulle,et al. Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs , 2012 .
[25] A. Volokitin,et al. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.
[26] A. Hoorfar,et al. INEQUALITIES ON THE LAMBERTW FUNCTION AND HYPERPOWER FUNCTION , 2008 .
[27] E. E. Tyrtyshnikov. How bad are Hankel matrices? , 1994 .
[28] C. Reisinger,et al. Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..
[29] D. Fasino. Spectral properties of Hankel matrices and numerical solutions of finite moment problems , 1995 .