Numerical modeling of the emplacement of Socompa rock avalanche, Chile
暂无分享,去创建一个
[1] Laércio Massaru Namikawa,et al. Parallel adaptive numerical simulation of dry avalanches over natural terrain , 2005 .
[2] A. K. Patraa,et al. Parallel adaptive numerical simulation of dry avalanches over natural terrain , 2004 .
[3] Sebastian Noelle,et al. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows , 2003, Journal of Fluid Mechanics.
[4] Gareth S. Collins,et al. Acoustic fluidization and the extraordinary mobility of sturzstroms , 2002 .
[5] F. Legros. The mobility of long-runout landslides , 2002 .
[6] Olivier Pouliquen,et al. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane , 2001, Journal of Fluid Mechanics.
[7] B. Voight,et al. The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufrière Hills Volcano, Montserrat , 2002, Geological Society, London, Memoirs.
[8] B. Voight,et al. Numerical simulation of the December 1997 Debris Avalanche in Montserrat, Lesser Antilles , 2001 .
[9] John J. Clague,et al. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes , 2001 .
[10] E. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .
[11] L. Keszthelyi,et al. A gravitational spreading origin for the Socompa debris avalanche , 2001 .
[12] Richard M. Iverson,et al. New views of granular mass flows , 2001 .
[13] Richard M. Iverson,et al. Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .
[14] Richard M. Iverson,et al. Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests , 2001 .
[15] P. Heinrich,et al. Analytical Solution for Testing Debris Avalanche Numerical Models , 2000 .
[16] J. Major,et al. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins , 1999 .
[17] Timothy R. H. Davies,et al. Runout of dry granular avalanches , 1999 .
[18] Yuko S Yamamoto,et al. Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan , 1999 .
[19] Herbert E. Huppert,et al. Long-runout rockfalls , 1998 .
[20] R. Iverson,et al. U. S. Geological Survey , 1967, Radiocarbon.
[21] G. Wadge,et al. The Socompa collapse and avalanche event , 1995 .
[22] P. Cleary,et al. Large-scale landslide simulations : global deformation, velocities and basal friction , 1995 .
[23] S. Savage,et al. The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .
[24] P. J. Shaller. Analysis and Implications of Large Martian and Terrestrial Landslides. , 1991 .
[25] H. Melosh. Giant rock avalanches , 1990, Nature.
[26] A. McEwen. Mobility of large rock avalanches: Evidence from Valles Marineris, Mars , 1989 .
[27] Charles S. Campbell,et al. Self-Lubrication for Long Runout Landslides , 1989, The Journal of Geology.
[28] S. Savage,et al. The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.
[29] D. Rothery,et al. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile , 1985 .
[30] B. Voight,et al. Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980 , 1983 .
[31] Timothy R. H. Davies,et al. Spreading of rock avalanche debris by mechanical fluidization , 1982 .
[32] William G. Pariseau,et al. Rockslides and Avalanches: Basic Principles, and Perspectives in the Realm of Civil and Mining Operations , 1979 .