Computational micromechanics modeling of inherent piezoresistivity in carbon nanotube–polymer nanocomposites

It has been observed that carbon nanotubes have a measurable inherent piezoresistive effect, that is to say that changes in carbon nanotube strain can induce changes in carbon nanotube resistivity, which may lead to observable macroscale piezoresistive response of carbon nanotube–polymer nanocomposites. In this article, the focus is on modeling the effect of inherent piezoresistivity of carbon nanotubes on the nanocomposite’s piezoresistive behavior using computational micromechanics techniques based on finite element analysis. Both in-plane and axial piezoresistive responses are being considered in an electromechanically coupled code. The computational results are used to estimate the magnitude of the piezoresistive coefficients of carbon nanotube needed for the piezoresistive response of macroscale nanocomposites to be comparable with experimental data in the literature. It is found that the current values for inherent piezoresistivity of the carbon nanotube are not sufficiently large enough to explain the observed macroscale piezoresistive response if inherent piezoresistive effect of carbon nanotubes is the only driving force for the piezoresistive response of the macroscale nanocomposites, and hence, additional mechanisms such as electron hopping and nanotube–nanotube contact may play important roles either individually or in a coupled fashion with inherent piezoresistivity of the carbon nanotube.

[1]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[2]  K. Schulte,et al.  Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load , 2009 .

[3]  Tsu-Wei Chou,et al.  Modeling of damage sensing in fiber composites using carbon nanotube networks , 2008 .

[4]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[5]  D. Lagoudas,et al.  A Micromechanics Model for the Thermal Conductivity of Nanotube-Polymer Nanocomposites , 2008 .

[6]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[7]  F. Avilés,et al.  Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field , 2011 .

[8]  J. Covas,et al.  Effect of filler dispersion on the electromechanical response of epoxy/vapor-grown carbon nanofiber composites , 2012 .

[9]  Cheng-I Weng,et al.  Electronic properties of zigzag carbon nanotubes under uniaxial strain , 2007 .

[10]  Dimitris A. Saravanos,et al.  Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models , 2010 .

[11]  W Zhang,et al.  Carbon nanotube/polycarbonate composites as multifunctional strain sensors. , 2006, Journal of nanoscience and nanotechnology.

[12]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[13]  Gregory M. Odegard,et al.  Constitutive Modeling of Nanotube-Reinforced Polymer Composites , 2002 .

[14]  Tsu-Wei Chou,et al.  Multiscale modeling of carbon nanotube reinforced polymer composites. , 2003, Journal of nanoscience and nanotechnology.

[15]  Chunyu Li,et al.  Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites , 2007 .

[16]  Dimitris C. Lagoudas,et al.  Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites , 2006 .

[17]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[19]  R. Joffe,et al.  Piezoresistive Performance of Long-Fiber Composites with Carbon Nanotube Doped Matrix , 2009 .

[20]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[21]  Dimitris C. Lagoudas,et al.  A Micromechanics Model for the Electrical Conductivity of Nanotube-Polymer Nanocomposites , 2009 .

[22]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[23]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[24]  Oddvar O. Bendiksen,et al.  Structures, Structural Dynamics and Materials Conference , 1998 .

[25]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[26]  Mark J. Schulz,et al.  A carbon nanotube strain sensor for structural health monitoring , 2006 .

[27]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[28]  Gregory M. Odegard,et al.  Computational materials: Multi-scale modeling and simulation of nanostructured materials , 2005 .

[29]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[30]  Kyeongjae Cho,et al.  Chemical control of nanotube electronics , 2000 .

[31]  J. Kang,et al.  Piezoresistive characteristics of single wall carbon nanotube/polyimide nanocomposites , 2009 .

[32]  Gary D. Seidel,et al.  Analysis of clustering, interphase region, and orientation effects on the electrical conductivity of carbon nanotube–polymer nanocomposites via computational micromechanics , 2011 .

[33]  Daniel C. Hammerand,et al.  Computational Micromechanics of Clustering and Interphase Effects in Carbon Nanotube Composites , 2007 .

[34]  Pol D. Spanos,et al.  A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites , 2008 .

[35]  M. Cullinan,et al.  Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment , 2010 .

[36]  B. Grushko,et al.  Evolution of the composition and structure of cleaved and heat-treated icosahedral Al-Pd-Mn quasicrystal surfaces , 1999 .

[37]  J. O. Aguilar,et al.  Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film , 2010 .

[38]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[39]  Senentxu Lanceros-Méndez,et al.  Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications , 2012 .

[40]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[41]  M. P. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1999 .

[42]  P. Ryser,et al.  Gauge Factor Enhancement Driven by Heterogeneity in Thick-film Resistors , 2001 .

[43]  G. Seidel,et al.  Analytic and computational multi-scale micromechanics models for mechanical and electrical properties of fuzzy ber composites , 2011 .

[44]  Jacob Fish,et al.  Computational damage mechanics for composite materials based on mathematical homogenization , 1999 .

[45]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[46]  Ning Hu,et al.  Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites , 2012, Nanoscale Research Letters.

[47]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[48]  C. Hierold,et al.  Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. , 2006, Nano letters.