A Review on the Development of the Inverted Polymer Solar Cell Architecture

The increase in energy production costs for fossil fuels has led to a search for an economically viable alternative energy source. One alternative energy source of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. However, the conventional architecture that is typically used for fabricating solar cells requires high vacuum to deposit the top metal electrode which is not suitable for roll-to-roll processing. Recently an inverted device architecture has been investigated as a suitable architecture for developing the ideal roll-to-roll type processing of polymer-based solar cells. This review will go over the recent advances and approaches in the development of this type of inverted device architecture. We will highlight some of the work that we have done to integrate materials, device, interface, and processing of the inverted device architecture platform to produce more idealized polymer-based solar cells.

[1]  A. Jen,et al.  Optimization of Active Layer and Anode Electrode for High-Performance Inverted Bulk-Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Soeren Steudel,et al.  Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells , 2009 .

[3]  Alex K.-Y. Jen,et al.  Polymer Solar Cells That Use Self‐Assembled‐Monolayer‐ Modified ZnO/Metals as Cathodes , 2008 .

[4]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[5]  Jing-Shun Huang,et al.  Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods , 2009 .

[6]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[7]  William R. Salaneck,et al.  X-ray photoelectron spectroscopy study of the metal/polymer contacts involving aluminum and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) derivatives , 2003 .

[8]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[9]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[10]  T. Marks,et al.  High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells , 2008 .

[11]  Jae Kwan Lee,et al.  Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. , 2008, Journal of the American Chemical Society.

[12]  J. D’Haen,et al.  Tuning the Dimensions of C60‐Based Needlelike Crystals in Blended Thin Films , 2006 .

[13]  Donal D. C. Bradley,et al.  Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene , 2005 .

[14]  Do Hwan Kim,et al.  Surface-induced conformational changes in poly(3-hexylthiophene) monolayer films. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[15]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[16]  Christoph J. Brabec,et al.  Organic Field‐Effect Devices as Tool to Characterize the Bipolar Transport in Polymer‐Fullerene Blends: The Case of P3HT‐PCBM , 2007 .

[17]  Garry Rumbles,et al.  Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices , 2008 .

[18]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[19]  A. Jen,et al.  A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor , 2009 .

[20]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[21]  Jean M. J. Fréchet,et al.  Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells , 2006 .

[22]  Christoph J. Brabec,et al.  Interface modification for highly efficient organic photovoltaics , 2008 .

[23]  Tzung-Fang Guo,et al.  Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells , 2008 .

[24]  Vishal Shrotriya,et al.  Efficient inverted polymer solar cells , 2006 .

[25]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[26]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[27]  Bernard Kippelen,et al.  Interface modification of ITO thin films: organic photovoltaic cells , 2003 .

[28]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[29]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[30]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[31]  Wolfgang Kowalsky,et al.  Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode , 2009 .

[32]  Michael Niggemann,et al.  Organic solar cells using inverted layer sequence , 2005 .

[33]  S. Holdcroft,et al.  Stabilizing bicontinuous nanophase segregation in piCP-C60 donor-acceptor blends. , 2008, Journal of the American Chemical Society.

[34]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[35]  J. Park,et al.  Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics , 2007 .

[36]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[37]  V. Mihailetchi,et al.  Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells , 2003 .

[38]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[39]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[40]  Bumjoon J. Kim,et al.  The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. , 2008, Journal of the American Chemical Society.

[41]  Alex K.-Y. Jen,et al.  Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells , 2009 .

[42]  Yang Yang,et al.  High efficiency polymer solar cells with vertically modulated nanoscale morphology , 2009, Nanotechnology.

[43]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[44]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[45]  Jenny Nelson,et al.  Using Self‐Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells , 2006 .

[46]  Jarvist M. Frost,et al.  Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions , 2008 .

[47]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[48]  Xianyu Deng,et al.  Methanofullerenes Used as Electron Acceptors in Polymer Photovoltaic Devices , 2004 .

[49]  W. Whang,et al.  All-solution-processed inverted polymer solar cells on granular surface-nickelized polyimide , 2009 .

[50]  J. Fréchet,et al.  Enhancing the thermal stability of polythiophene:fullerene solar cells by decreasing effective polymer regioregularity. , 2006, Journal of the American Chemical Society.

[51]  Xindong Zhang,et al.  Role of tungsten oxide in inverted polymer solar cells , 2009 .

[52]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[53]  Chun-Sing Lee,et al.  Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer , 2006 .

[54]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[55]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[56]  Chieh-Wei Chen,et al.  Integration of organic light-emitting diode and organic transistor via a tandem structure , 2005 .

[57]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[58]  Chang Su Kim,et al.  Oxidation of silver electrodes induces transition from conventional to inverted photovoltaic characteristics in polymer solar cells , 2009 .

[59]  J. Loos,et al.  Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells , 2009 .

[60]  Wen‐Chang Chen,et al.  Flexible Polymer Photovoltaic Devices Prepared With Inverted Structures on Metal Foils , 2009, IEEE Electron Device Letters.

[61]  D. Ginley,et al.  Impact of contact evolution on the shelf life of organic solar cells , 2009 .

[62]  David S. Germack,et al.  Substrate-dependent interface composition and charge transport in films for organic photovoltaics , 2009 .

[63]  Hong Ma,et al.  High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer , 2008 .

[64]  Xiao Wei Sun,et al.  An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer , 2009 .

[65]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[66]  Xindong Zhang,et al.  Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer , 2008 .

[67]  S. Punchihewa,et al.  Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates , 1991 .

[68]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .