Polymorphism of [6]Cycloparaphenylene for Packing Structure-dependent Host–Guest Interaction

Molecular carbon nanorings, [n]cycloparaphenylenes ([n]CPP), are a unique class of porous molecules with all-benzene surface. Herein, we report the preparation of polymorphs of [6]CPP crystals for the first time, and the discovery of their packing structure-dependent properties. We found that the herringbone-packed structure is thermodynamically more stable than the tubular-packed structure. We revealed that their host–guest interaction depends on the packing structures of [6]CPP: the tubular-packing affords one-dimensional open channels for weak guest sorption, while the herringbone-packing gives closed cavities for strong guest entrapment. This study exemplifies that the solid-state host–guest chemistry of CPP crystals can be directed by controlling their packing structures.

[1]  Á. Pérez‐Jiménez,et al.  Theoretical Determination of Interaction and Cohesive Energies of Weakly Bound Cycloparaphenylene Molecules , 2016 .

[2]  E. Darzi,et al.  Quantum Confinement of Surface Electrons by Molecular Nanohoop Corrals. , 2016, The journal of physical chemistry letters.

[3]  William R. Dichtel,et al.  Discrete, Hexagonal Boronate Ester-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks , 2016 .

[4]  Kenichiro Itami,et al.  Design and Synthesis of Carbon Nanotube Segments. , 2016, Angewandte Chemie.

[5]  S. Irle,et al.  Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness† †Electronic supplementary information (ESI) available: Experimental details, powder XRD patterns, adsorption isotherms, NMR spectra, IR spectra, TG-MS charts, additional description for m , 2016, Chemical science.

[6]  Kenichiro Itami,et al.  Structurally uniform and atomically precise carbon nanostructures , 2016 .

[7]  K. Müllen,et al.  New advances in nanographene chemistry. , 2015, Chemical Society reviews.

[8]  E. Darzi,et al.  The dynamic, size-dependent properties of [5]-[12]cycloparaphenylenes. , 2015, Chemical Society reviews.

[9]  S. E. Lewis,et al.  Cycloparaphenylenes and related nanohoops. , 2015, Chemical Society reviews.

[10]  J. Brédas,et al.  Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport , 2015 .

[11]  Toshiyasu Suzuki,et al.  Selective Synthesis of [6]-, [8]-, and [10]Cycloparaphenylenes , 2013 .

[12]  Christian J. Doonan,et al.  Kinetically controlled porosity in a robust organic cage material. , 2013, Angewandte Chemie.

[13]  C. Nuckolls,et al.  Post-deposition processing methods to induce preferential orientation in contorted hexabenzocoronene thin films. , 2013, ACS nano.

[14]  R. Jasti,et al.  Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP , 2012 .

[15]  Toshiyasu Suzuki,et al.  Selective synthesis and crystal structure of [10]cycloparaphenylene. , 2012, Organic letters.

[16]  R. Jasti,et al.  Synthesis, characterization, and crystal structure of [6]cycloparaphenylene. , 2012, Angewandte Chemie.

[17]  A. Cooper,et al.  Modular and predictable assembly of porous organic molecular crystals , 2011, Nature.

[18]  K. Itami,et al.  [9]Cycloparaphenylene : Nickel-mediated Synthesis and Crystal Structure , 2011 .

[19]  N. Tokitoh,et al.  Concise synthesis and crystal structure of [12]cycloparaphenylene. , 2011, Angewandte Chemie.

[20]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[21]  L. T. Scott,et al.  Geodesic polyarenes by flash vacuum pyrolysis. , 2006, Chemical reviews.

[22]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[23]  M. Nishio,et al.  interaction in the conformation of organic compounds. A database study , 1999 .

[24]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[25]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .