Advanced mixed-integer programming formulations : methodology, computation, and application

[1]  Thomas L. Magnanti,et al.  A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..

[2]  Manfred W. Padberg,et al.  Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..

[3]  Silvano Martello,et al.  Piecewise linear approximation of functions of two variables in MILP models , 2010, Oper. Res. Lett..

[4]  R. Jabr Radial distribution load flow using conic programming , 2006, IEEE Transactions on Power Systems.

[5]  J. Tomlin A Suggested Extension of Special Ordered Sets to Non-Separable Non-Convex Programming Problems* , 1981 .

[6]  R. Kevin Wood,et al.  Explicit-Constraint Branching for Solving Mixed-Integer Programs , 2000 .

[7]  Ionela Prodan,et al.  Mixed-Integer Representations in Control Design: Mathematical Foundations and Applications , 2015 .

[8]  Matteo Fischetti,et al.  Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study , 2017, ArXiv.

[9]  Scott Kuindersma,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2015, Autonomous Robots.

[10]  George L. Nemhauser,et al.  Branch-and-cut for combinatorial optimization problems without auxiliary binary variables , 2001, The Knowledge Engineering Review.

[11]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[12]  John N. Hooker,et al.  Logic, Optimization, and Constraint Programming , 2002, INFORMS J. Comput..

[13]  Pedro M. Castro,et al.  Global optimization of bilinear programs with a multiparametric disaggregation technique , 2013, Journal of Global Optimization.

[14]  Pascal Van Hentenryck,et al.  Simulation of Hybrid Circuits in Constraint Logic Programming , 1989, IJCAI.

[15]  G. Dantzig ON THE SIGNIFICANCE OF SOLVING LINEAR PROGRAMMING PROBLEMS WITH SOME INTEGER VARIABLES , 1960 .

[16]  Christodoulos A. Floudas,et al.  Global Optimization of Gas Lifting Operations: A Comparative Study of Piecewise Linear Formulations , 2009 .

[17]  A. Fügenschuh,et al.  Mixed-integer linear methods for layout-optimization of screening systems in recovered paper production , 2014 .

[18]  Ignacio E. Grossmann,et al.  An improved piecewise outer-approximation algorithm for the global optimization of MINLP models involving concave and bilinear terms , 2008, Comput. Chem. Eng..

[19]  Eduardo Camponogara,et al.  Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing , 2012, Eur. J. Oper. Res..

[20]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[21]  Markus Holzer,et al.  Inapproximability of Nondeterministic State and Transition Complexity Assuming P=!NP , 2007, Developments in Language Theory.

[22]  Ilias Zadik,et al.  Mixed-Integer Convex Representability , 2016, IPCO.

[23]  Robin Deits,et al.  Efficient mixed-integer planning for UAVs in cluttered environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[24]  E. Camponogara,et al.  A Computational Analysis of Convex Combination Models for Multidimensional Piecewise-Linear Approximation in Oil Production Optimization , 2012 .

[25]  L. Foulds,et al.  A bilinear approach to the pooling problem , 1992 .

[26]  I. Karimi,et al.  Piecewise MILP under‐ and overestimators for global optimization of bilinear programs , 2008 .

[27]  Ignacio E. Grossmann,et al.  A global optimization algorithm for linear fractional and bilinear programs , 1995, J. Glob. Optim..

[28]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[29]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..

[30]  Peter C. Fishburn,et al.  Bipartite dimensions and bipartite degrees of graphs , 1996, Discret. Math..

[31]  Frank M. Muldoon Polyhedral Approximations of Quadratic Semi-Assignment Problems, Disjunctive Programs, and Base-2 Expansions of Integer Variables , 2012 .

[32]  Juan Pablo Vielma,et al.  Mixed Integer Linear Programming Formulation Techniques , 2015, SIAM Rev..

[33]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[34]  Dimitris Bertsimas,et al.  Optimal classification trees , 2017, Machine Learning.

[35]  Hassan L. Hijazi,et al.  Mixed-integer nonlinear programs featuring “on/off” constraints , 2012, Comput. Optim. Appl..

[36]  R. G. Jeroslow,et al.  Experimental Results on the New Techniques for Integer Programming Formulations , 1985 .

[37]  Raffaello D'Andrea,et al.  Iterative MILP methods for vehicle-control problems , 2005, IEEE Transactions on Robotics.

[38]  Richard E. Rosenthal,et al.  GAMS -- A User's Guide , 2004 .

[39]  Michael J. Maher,et al.  Constraint Logic Programming: A Survey , 1994, J. Log. Program..

[40]  Don Coppersmith,et al.  Parsimonious binary-encoding in integer programming , 2005, Discret. Optim..

[41]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[42]  James R. Luedtke,et al.  Some results on the strength of relaxations of multilinear functions , 2012, Math. Program..

[43]  Scott Sanner,et al.  Scalable Planning with Tensorflow for Hybrid Nonlinear Domains , 2017, NIPS.

[44]  Peter L. Hammer,et al.  Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.

[45]  A. S. Manne,et al.  On the Solution of Discrete Programming Problems , 1956 .

[46]  Samuel Fiorini,et al.  Small Extended Formulations for Cyclic Polytopes , 2015, Discret. Comput. Geom..

[47]  James Daniel Foster,et al.  Mixed-integer quadratically-constrained programming, piecewise-linear approximation and error analysis with applications in power flow , 2014 .

[48]  Juan Pablo Vielma,et al.  Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools , 2017, 1708.00050.

[49]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2011, Math. Program..

[50]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[51]  Robert E. Bixby,et al.  Progress in computational mixed integer programming—A look back from the other side of the tipping point , 2007, Ann. Oper. Res..

[52]  Thorsten Koch,et al.  Evaluating Gas Network Capacities , 2015, MOS-SIAM Series on Optimization.

[53]  Juan Pablo Vielma,et al.  A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints , 2019, Math. Oper. Res..

[54]  Vijay Kumar,et al.  Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams , 2012, 2012 IEEE International Conference on Robotics and Automation.

[55]  Santanu S. Dey,et al.  Strong SOCP Relaxations for Optimal Power Flow , 2015 .

[56]  M. Todd Union Jack Triangulations , 1977 .

[57]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[58]  Hanif D. Sherali,et al.  Global optimization of nonconvex factorable programming problems , 2001, Math. Program..

[59]  Björn Geißler,et al.  Using Piecewise Linear Functions for Solving MINLP s , 2012 .

[60]  R. G. Jeroslow,et al.  Alternative formulations of mixed integer programs , 1988 .

[61]  Steffen Rebennack,et al.  Computing tight bounds via piecewise linear functions through the example of circle cutting problems , 2016, Mathematical Methods of Operations Research.

[62]  Scott Sanner,et al.  Nonlinear Hybrid Planning with Deep Net Learned Transition Models and Mixed-Integer Linear Programming , 2017, IJCAI.

[63]  Juan Pablo Vielma,et al.  Embedding Formulations and Complexity for Unions of Polyhedra , 2015, Manag. Sci..

[64]  Alexander Martin,et al.  A mixed integer approach for time-dependent gas network optimization , 2010, Optim. Methods Softw..

[65]  Hanif D. Sherali,et al.  Ideal representations of lexicographic orderings and base-2 expansions of integer variables , 2013, Oper. Res. Lett..

[66]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[67]  Jean Fonlupt,et al.  Chromatic characterization of biclique covers , 2006, Discret. Math..

[68]  Tamás Kis Lift-and-project for general two-term disjunctions , 2014, Discret. Optim..

[69]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[70]  Christodoulos A. Floudas,et al.  APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes , 2011, Comput. Chem. Eng..

[71]  Andrea Lodi,et al.  Cutting Planes from Wide Split Disjunctions , 2017, IPCO.

[72]  Carla Savage,et al.  A Survey of Combinatorial Gray Codes , 1997, SIAM Rev..

[73]  Harold W. Kuhn,et al.  Some Combinatorial Lemmas in Topology , 1960, IBM J. Res. Dev..

[74]  D. Z. Wang,et al.  Global optimization method for network design problem with stochastic user equilibrium , 2015 .

[75]  Kent Andersen,et al.  Split closure and intersection cuts , 2002, Math. Program..

[76]  John Saunders Bellingham,et al.  Coordination and Control of UAV Fleets using Mixed-Integer Linear Programming , 2002 .

[77]  George L. Nemhauser,et al.  Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions , 2010, Oper. Res..

[78]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[79]  Jon Lee,et al.  Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..

[80]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[81]  Nicholas Beaumont,et al.  An algorithm for disjunctive programs , 1990 .

[82]  Jianfeng Liu,et al.  A multitree approach for global solution of ACOPF problems using piecewise outer approximations , 2017, Comput. Chem. Eng..

[83]  Jeff T. Linderoth,et al.  Orbital Branching , 2007, IPCO.

[84]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[85]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[86]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations , 2012, Mathematical Programming.

[87]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[88]  George L. Nemhauser,et al.  Models for representing piecewise linear cost functions , 2004, Oper. Res. Lett..

[89]  Hai Zhao,et al.  A special ordered set approach for optimizing a discontinuous separable piecewise linear function , 2008, Oper. Res. Lett..

[90]  Eduardo Camponogara,et al.  A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization , 2014, Eur. J. Oper. Res..

[91]  Xu Andy Sun,et al.  A New Voltage Stability-Constrained Optimal Power-Flow Model: Sufficient Condition, SOCP Representation, and Relaxation , 2017, IEEE Transactions on Power Systems.

[92]  Christian Tjandraatmadja,et al.  Bounding and Counting Linear Regions of Deep Neural Networks , 2017, ICML.

[93]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[94]  Michael A. Trick,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008, Paris, France, May 20-23, 2008, Proceedings , 2008, CPAIOR.

[95]  Ilias Zadik,et al.  Regularity in mixed-integer convex representability , 2017 .

[96]  Rico Zenklusen,et al.  Extension Complexity Lower Bounds for Mixed-Integer Extended Formulations , 2017, SODA.

[97]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[98]  Alexander Martin,et al.  Mixed Integer Models for the Stationary Case of Gas Network Optimization , 2006, Math. Program..

[99]  Thomas L. Magnanti,et al.  Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs , 2007, Oper. Res..

[100]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[101]  George L. Nemhauser,et al.  A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs , 2008, INFORMS J. Comput..

[102]  Patrick Scott Mara,et al.  Triangulations for the Cube , 1976, J. Comb. Theory A.

[103]  Stephen C. Graves,et al.  A composite algorithm for a concave-cost network flow problem , 1989, Networks.

[104]  George L. Nemhauser,et al.  A polyhedral study of the cardinality constrained knapsack problem , 2002, Math. Program..

[105]  Jon Lee,et al.  Algorithmic and modeling insights via volumetric comparison of polyhedral relaxations , 2018, Math. Program..

[106]  Eduardo Camponogara,et al.  Integrated production optimization of oil fields with pressure and routing constraints: The Urucu field , 2012, Comput. Chem. Eng..

[107]  Ming Zhao,et al.  Branch-and-cut for separable piecewise linear optimization and intersection with semi-continuous constraints , 2013, Math. Program. Comput..

[108]  Franz Aurenhammer,et al.  Towards compatible triangulations , 2001, Theor. Comput. Sci..

[109]  Thomas L. Magnanti,et al.  Separable Concave Optimization Approximately Equals Piecewise Linear Optimization , 2004, IPCO.

[110]  Chih-Hong Cheng,et al.  Maximum Resilience of Artificial Neural Networks , 2017, ATVA.

[111]  Ionela Prodan,et al.  Enhancements on the Hyperplanes Arrangements in Mixed-Integer Programming Techniques , 2012, J. Optim. Theory Appl..

[112]  J. Orlin Contentment in graph theory: Covering graphs with cliques , 1977 .

[113]  Russ Tedrake,et al.  Verifying Neural Networks with Mixed Integer Programming , 2017, ArXiv.

[114]  Pedro M. Castro,et al.  Comparison of global optimization algorithms for the design of water-using networks , 2013, Comput. Chem. Eng..

[115]  Rico Zenklusen,et al.  Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix , 2015, Math. Program..

[116]  Ignacio E. Grossmann,et al.  Logic-based outer approximation for globally optimal synthesis of process networks , 2005, Comput. Chem. Eng..

[117]  Sercan Yildiz,et al.  Incremental and encoding formulations for Mixed Integer Programming , 2013, Oper. Res. Lett..

[118]  George L. Nemhauser,et al.  Nonconvex, lower semicontinuous piecewise linear optimization , 2008, Discret. Optim..

[119]  Brian W. Kernighan,et al.  AMPL: a mathematical programming language , 1989 .

[120]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[121]  Daniel Bienstock,et al.  Computational study of a family of mixed-integer quadratic programming problems , 1995, Math. Program..

[122]  Gérard Cornuéjols,et al.  Cutting planes from two-term disjunctions , 2013, Oper. Res. Lett..

[123]  Iain Dunning,et al.  Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..

[124]  Dimitris Bertsimas,et al.  OR Forum - An Algorithmic Approach to Linear Regression , 2016, Oper. Res..

[125]  George L. Nemhauser,et al.  A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization , 2006, Oper. Res..