Tractable Monotone Temporal Planning

This paper describes a polynomially-solvable sub-problem of temporal planning. Polynomiality follows from two assumptions. Firstly, by supposing that each sub-goal fluent can be established by at most one action, we can quickly determine which actions are necessary in any plan. Secondly, the monotonicity of sub-goal fluents allows us to express planning as an instance of STP≠ (Simple Temporal Problem, difference constraints). Our class includes temporally-expressive problems, which we illustrate with an example of chemical process planning.

[1]  Martin C. Cooper,et al.  Solving Temporally-Cyclic Planning Problems , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[2]  John K. Slaney,et al.  Blocks World revisited , 2001, Artif. Intell..

[3]  Alfonso Gerevini,et al.  On Finding a Solution in Temporal Constraint Satisfaction Problems , 1997, IJCAI.

[4]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[5]  Carmel Domshlak,et al.  New Islands of Tractability of Cost-Optimal Planning , 2008, J. Artif. Intell. Res..

[6]  Christer Bäckström,et al.  Tractable Planning with State Variables by Exploiting Structural Restrictions , 1994, AAAI.

[7]  P. Pandurang Nayak,et al.  A Reactive Planner for a Model-based Executive , 1997, IJCAI.

[8]  Ronen I. Brafman,et al.  Strucutre and Complexitiy in Planning with Unary Operators , 2000, PuK.

[9]  V. S. Subrahmanian,et al.  Complexity, Decidability and Undecidability Results for Domain-Independent Planning , 1995, Artif. Intell..

[10]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[11]  Craig A. Knoblock Automatically Generating Abstractions for Planning , 1994, Artif. Intell..

[12]  Martin C. Cooper,et al.  Tractable Constraints on Ordered Domains , 1995, Artif. Intell..

[13]  Jj Org Hoomann Where Ignoring Delete Lists Works: Local Search Topology in Planning Benchmarks , 2003 .

[14]  Subbarao Kambhampati,et al.  When is Temporal Planning Really Temporal? , 2007, IJCAI.

[15]  Manolis Koubarakis,et al.  Dense Time and Temporal Constraints with != , 1992, KR.

[16]  Malte Helmert,et al.  Complexity results for standard benchmark domains in planning , 2003, Artif. Intell..

[17]  Anders Jonsson The Role of Macros in Tractable Planning over Causal Graphs , 2007, IJCAI.

[18]  Malte Helmert,et al.  New Complexity Results for Classical Planning Benchmarks , 2006, ICAPS.

[19]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[20]  Anders Jonsson,et al.  The Complexity of Planning Problems With Simple Causal Graphs , 2008, J. Artif. Intell. Res..

[21]  Hubie Chen,et al.  Causal graphs and structurally restricted planning , 2010, J. Comput. Syst. Sci..

[22]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[23]  Christer Bäckström,et al.  Incremental planning , 1996 .

[24]  Patrik Haslum A New Approach to Tractable Planning , 2008, ICAPS.

[25]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[26]  Christer Bäckström,et al.  State-Variable Planning Under Structural Restrictions: Algorithms and Complexity , 1998, Artif. Intell..

[27]  Christer Bäckström,et al.  Parallel Non-Binary Planning in Polynomial Time , 1991, IJCAI.

[28]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[29]  Hector Geffner,et al.  Solving Simple Planning Problems with More Inference and No Search , 2005, CP.

[30]  Carmel Domshlak,et al.  Multi-agent off-line coordination: Structure and complexity , 2001 .

[31]  Jussi Rintanen,et al.  Complexity of Concurrent Temporal Planning , 2007, ICAPS.

[32]  P. Haslum Reducing Accidental Complexity in Planning Problems , 2007, IJCAI.

[33]  Ronen I. Brafman,et al.  Factored Planning: How, When, and When Not , 2006, AAAI.