Worldwide standardization activity for quantum key distribution

We discuss the on-going worldwide activity to develop forward looking standards for quantum key distribution (QKD) in the European Telecommunications Standards Institute (ETSI) QKD industry specification group (ISG). The long term goal is to develop a certification methodology that bridges the gap between theoretical proofs and practical implementations with imperfect devices. Current efforts are focused on the handling of side channels and characterization of the most relevant components.

[1]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[2]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[3]  A. Germak,et al.  Istituto Nazionale di Ricerca Metrologica , 2009 .

[4]  Gaby Lenhart,et al.  Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD , 2009 .

[5]  Valerio Scarani,et al.  The black paper of quantum cryptography: Real implementation problems , 2009, Theor. Comput. Sci..

[6]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[7]  Christoph Pacher,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[8]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[9]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[10]  Momtchil Peev,et al.  Quantum Metropolitan Optical Network based on Wavelength Division Multiplexing , 2014, Optics express.

[11]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[12]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[13]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[14]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[15]  Andrew Sharpe,et al.  Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. , 2014, Optics express.

[16]  H. Weinfurter,et al.  The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? , 2001, quant-ph/0104103.

[17]  Richard J. Hughes,et al.  Optical networking for quantum key distribution and quantum communications , 2009 .

[18]  Vadim Makarov,et al.  Avoiding the blinding attack in QKD , 2010 .

[19]  A. W. Sharpe,et al.  Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber , 2012, 1212.0033.

[20]  Dag Roar Hjelme,et al.  Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography , 2001 .

[21]  James F. Dynes,et al.  Avoiding the blinding attack in QKD , 2010 .

[22]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[23]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..