Nucleosome-Chd1 structure and implications for chromatin remodelling

Chromatin-remodelling factors change nucleosome positioning and facilitate DNA transcription, replication, and repair. The conserved remodelling factor chromodomain-helicase-DNA binding protein 1(Chd1) can shift nucleosomes and induce regular nucleosome spacing. Chd1 is required for the passage of RNA polymerase IIthrough nucleosomes and for cellular pluripotency. Chd1 contains the DNA-binding domains SANT and SLIDE, a bilobal motor domain that hydrolyses ATP, and a regulatory double chromodomain. Here we report the cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 Å. Chd1 detaches two turns of DNA from the histone octamer and binds between the two DNA gyres in a state poised for catalysis. The SANT and SLIDE domains contact detached DNA around superhelical location (SHL) −7 of the first DNA gyre. The ATPase motor binds the second DNA gyre at SHL +2 and is anchored to the N-terminal tail of histone H4, as seen in a recent nucleosome–Snf2 ATPase structure. Comparisons with published results reveal that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure. The ATPase can then promote translocation of DNA towards the nucleosome dyad, thereby loosening the first DNA gyre and remodelling the nucleosome. Translocation may involve ratcheting of the two lobes of the ATPase, which is trapped in a pre- or post-translocation state in the absence or presence, respectively, of transition state-mimicking compounds.

[1]  H. Morse,et al.  DNA damage repair and tolerance: a role in chemotherapeutic drug resistance , 2013, British journal of biomedical science.

[2]  D. Gotte,et al.  RNA polymerase II senses obstruction in the DNA minor groove via a conserved sensor motif , 2016, Proceedings of the National Academy of Sciences.

[3]  Dennis C. Sgroi,et al.  Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes , 2016 .

[4]  P. V. van Midwoud,et al.  Quantification of acylfulvene- and illudin S-DNA adducts in cells with variable bioactivation capacities. , 2013, Chemical research in toxicology.

[5]  C. Dienemann,et al.  Transcription initiation complex structures elucidate DNA opening , 2016, Nature.

[6]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[7]  Ashby J. Morrison,et al.  Regulation of Telomere Structure and Functions by Subunits of the INO80 Chromatin Remodeling Complex , 2007, Molecular and Cellular Biology.

[8]  Steven Henikoff,et al.  The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1 , 2014, eLife.

[9]  Jeffrey N. McKnight,et al.  Extranucleosomal DNA Binding Directs Nucleosome Sliding by Chd1 , 2011, Molecular and Cellular Biology.

[10]  E.Y.D. Chua,et al.  Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. , 2010, Journal of molecular biology.

[11]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[12]  Patrick Cramer,et al.  Structural basis of transcription elongation. , 2013, Biochimica et biophysica acta.

[13]  G. Narlikar,et al.  A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. , 2015, Molecular cell.

[14]  D. Troyer,et al.  Effects on DNA integrity and apoptosis induction by a novel antitumor sesquiterpene drug, 6-hydroxymethylacylfulvene (HMAF, MGI 114). , 1997, Biochemical pharmacology.

[15]  R. Perry,et al.  A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Jeffrey N. McKnight,et al.  The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. , 2010, Molecular cell.

[17]  W. Baumeister,et al.  Architecture of the RNA polymerase II–Mediator core initiation complex , 2015, Nature.

[18]  S. Gasser,et al.  Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double‐strand breaks , 2007, The EMBO journal.

[19]  R. Lavery,et al.  Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. , 2017, Molecular cell.

[20]  Song Tan,et al.  Nucleosome Structure and Function , 2014, Chemical reviews.

[21]  Hua Xiao,et al.  Spatial Contacts and Nucleosome Step Movements Induced by the NURF Chromatin Remodeling Complex* , 2004, Journal of Biological Chemistry.

[22]  U. Gerland,et al.  Nucleosome Spacing Generated by ISWI and CHD1 Remodelers Is Constant Regardless of Nucleosome Density , 2015, Molecular and Cellular Biology.

[23]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[24]  S. Sturla,et al.  Quantitative correlation of drug bioactivation and deoxyadenosine alkylation by acylfulvene. , 2007, Chemical research in toxicology.

[25]  Charles M. Rice,et al.  Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism , 2009, Proceedings of the National Academy of Sciences.

[26]  Manolis Kellis,et al.  CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors , 2014, Proceedings of the National Academy of Sciences.

[27]  P. Cramer,et al.  Molecular Basis of Transcription-Coupled Pre-mRNA Capping. , 2015, Molecular cell.

[28]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[29]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[30]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[31]  Roger D Kornberg,et al.  Histone Octamer Transfer by a Chromatin-Remodeling Complex , 1999, Cell.

[32]  Anjanabha Saha,et al.  Chromatin remodeling through directional DNA translocation from an internal nucleosomal site , 2005, Nature Structural &Molecular Biology.

[33]  D. Wigley,et al.  A glimpse into chromatin remodeling , 2017, Nature Structural &Molecular Biology.

[34]  Sean D. Taverna,et al.  How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers , 2007, Nature Structural &Molecular Biology.

[35]  N. Proudfoot Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut , 2016, Science.

[36]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[37]  Yinsheng Wang,et al.  Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA , 2015, Nucleic acids research.

[38]  Carlos Bustamante,et al.  DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. , 2006, Molecular cell.

[39]  Song Tan,et al.  Structure of RCC1 chromatin factor bound to the nucleosome core particle , 2010, Nature.

[40]  R. Simpson Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. , 1978, Biochemistry.

[41]  T. Owen-Hughes,et al.  Mechanisms and Functions of ATP-Dependent Chromatin-Remodeling Enzymes , 2013, Cell.

[42]  M. Carlson,et al.  Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. , 1984, Genetics.

[43]  Song Tan,et al.  Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome , 2014, Nature.

[44]  D. Bushnell,et al.  Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II , 2004, Science.

[45]  V. Armstrong,et al.  Mechanistic studies on deoxyribonucleic acid dependent ribonucleic acid polymerase from Escherichia coli using phosphorothioate analogues. 1. Initiation and pyrophosphate exchange reactions. , 1979, Biochemistry.

[46]  P. J. Brooks,et al.  A Quantitative Assay for Assessing the Effects of DNA Lesions on Transcription , 2012, Nature chemical biology.

[47]  Michelle D. Wang,et al.  The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome , 2016, Nucleic acids research.

[48]  V. Iyer,et al.  The chromo domain protein Chd1p from budding yeast is an ATP‐dependent chromatin‐modifying factor , 2000, The EMBO journal.

[49]  J. Workman,et al.  Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange , 2012, Nature Structural &Molecular Biology.

[50]  Bradley R. Cairns,et al.  Chromatin remodelling: the industrial revolution of DNA around histones , 2006, Nature Reviews Molecular Cell Biology.

[51]  Irina Artsimovitch,et al.  Structural basis for substrate loading in bacterial RNA polymerase , 2007, Nature.

[52]  W. Rutter,et al.  Multiple Forms of DNA-dependent RNA Polymerase in Eukaryotic Organisms , 1969, Nature.

[53]  D. Libri,et al.  Transcription termination and the control of the transcriptome: why, where and how to stop , 2015, Nature Reviews Molecular Cell Biology.

[54]  T. Richmond,et al.  X-ray structure of a tetranucleosome and its implications for the chromatin fibre , 2005, Nature.

[55]  P. Cramer,et al.  Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. , 2009, Molecular cell.

[56]  J. Michaelis,et al.  Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. , 2007, Current opinion in structural biology.

[57]  Dandan Liu,et al.  Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin‐induced DNA damage , 2017, British journal of pharmacology.

[58]  James M. Berger,et al.  Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome. , 2017, Molecular cell.

[59]  Patricia Richard,et al.  Transcription termination by nuclear RNA polymerases. , 2009, Genes & development.

[60]  P. Cramer,et al.  Architecture and RNA binding of the human negative elongation factor , 2016, eLife.

[61]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[62]  N. Proudfoot,et al.  Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites , 2004, Nature.

[63]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[64]  A. Gnatt,et al.  Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions , 2015, Proceedings of the National Academy of Sciences.

[65]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[66]  G. Längst,et al.  Critical Role for the Histone H4 N Terminus in Nucleosome Remodeling by ISWI , 2001, Molecular and Cellular Biology.

[67]  Ashby J. Morrison,et al.  Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes , 2009, Nature Reviews Molecular Cell Biology.

[68]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[69]  Kyle V. Butler,et al.  Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues , 2014, Nucleic acids research.

[70]  Robert Landick,et al.  A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. , 2007, Molecular cell.

[71]  Steven Henikoff,et al.  ISWI and CHD chromatin remodelers bind to promoters but act in gene bodies , 2013, Epigenetics & Chromatin.

[72]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[73]  Lori A. Passmore,et al.  Ultrastable gold substrates for electron cryomicroscopy , 2014, Science.

[74]  B. Cairns,et al.  Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler , 2013, Proceedings of the National Academy of Sciences.

[75]  Patrick Cramer,et al.  Structural basis of transcription initiation by RNA polymerase II , 2015, Nature Reviews Molecular Cell Biology.

[76]  R. Stefl,et al.  Faculty Opinions recommendation of RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. , 2014 .

[77]  S. Helder,et al.  The Chromatin Remodelling Protein CHD1 Contains a Previously Unrecognised C-Terminal Helical Domain. , 2016, Journal of molecular biology.

[78]  Rishi Matadeen,et al.  Structural basis for retroviral integration into nucleosomes , 2015, Nature.

[79]  Xueming Li,et al.  Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure , 2017, Nature.

[80]  D. Tegunov,et al.  Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex , 2017, Nature Communications.

[81]  D. Stillman,et al.  SWI/SNF Binding to the HO Promoter Requires Histone Acetylation and Stimulates TATA-Binding Protein Recruitment , 2006, Molecular and Cellular Biology.

[82]  Jeffrey N. McKnight,et al.  Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler , 2012, Nucleic acids research.

[83]  B. van Steensel,et al.  Chromatin: constructing the big picture , 2011, The EMBO journal.

[84]  Michael T. McManus,et al.  Chd1 regulates open chromatin and pluripotency of embryonic stem cells , 2009, Nature.

[85]  Oliver J. Rando,et al.  Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo , 2015, G3: Genes, Genomes, Genetics.

[86]  S. Sainsbury,et al.  Structure and function of the initially transcribing RNA polymerase II–TFIIB complex , 2012, Nature.

[87]  P. V. van Midwoud,et al.  Improved efficacy of acylfulvene in colon cancer cells when combined with a nuclear excision repair inhibitor. , 2013, Chemical research in toxicology.

[88]  John S. Hawkins,et al.  Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription , 2015, Proceedings of the National Academy of Sciences.

[89]  Shin-ichi Tate,et al.  Alteration of the nucleosomal DNA path in the crystal structure of a human nucleosome core particle , 2005, Nucleic acids research.

[90]  F. Werner,et al.  Evolution of multisubunit RNA polymerases in the three domains of life , 2011, Nature Reviews Microbiology.

[91]  Amanda Lee Hughes,et al.  Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes , 2016, bioRxiv.

[92]  J. Berger,et al.  Running in Reverse: The Structural Basis for Translocation Polarity in Hexameric Helicases , 2009, Cell.

[93]  P. Hanawalt,et al.  Modulation of Cytotoxicity by Transcription-Coupled Nucleotide Excision Repair Is Independent of the Requirement for Bioactivation of Acylfulvene. , 2017, Chemical research in toxicology.

[94]  N. Cook,et al.  Mechanistic Basis of 5′-3′ Translocation in SF1B Helicases , 2009, Cell.

[95]  E. Raymond,et al.  Irofulven Cytotoxicity Depends on Transcription-Coupled Nucleotide Excision Repair and Is Correlated with XPG Expression in Solid Tumor Cells , 2004, Clinical Cancer Research.

[96]  D. Lane,et al.  Transcription — guarding the genome by sensing DNA damage , 2004, Nature Reviews Cancer.

[97]  T. Richmond,et al.  Expression and purification of recombinant histones and nucleosome reconstitution. , 1999, Methods in molecular biology.

[98]  Anjanabha Saha,et al.  Chromatin remodeling by RSC involves ATP-dependent DNA translocation. , 2002, Genes & development.

[99]  Zhucheng Chen,et al.  Structure and regulation of the chromatin remodeller ISWI , 2016, Nature.

[100]  E. S,et al.  Reconstitution of Nucleosome Core Particles from Recombinant Histones and DNA , 2003 .

[101]  Dong Wang,et al.  Mechanism of transcription-coupled DNA modification recognition , 2017, Cell & Bioscience.

[102]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[103]  S. Sturla,et al.  Minor Groove 3-Deaza-Adenosine Analogues: Synthesis and Bypass in Translesion DNA Synthesis. , 2017, Chemistry.

[104]  Wei-Hua Wu,et al.  ATP-Driven Exchange of Histone H2AZ Variant Catalyzed by SWR1 Chromatin Remodeling Complex , 2004, Science.

[105]  G. Bowman,et al.  Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA* , 2011, The Journal of Biological Chemistry.

[106]  Karolin Luger,et al.  Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions , 2001, The EMBO journal.

[107]  Sébastien Phan,et al.  ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells , 2017, Science.

[108]  Xuhui Huang,et al.  X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct , 2010, Proceedings of the National Academy of Sciences.

[109]  J. Brooks,et al.  Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness , 2012, Oncogene.

[110]  O. Nureki,et al.  Structural Basis for RNA Unwinding by the DEAD-Box Protein Drosophila Vasa , 2006, Cell.

[111]  E. Lindahl,et al.  Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 , 2016, bioRxiv.

[112]  Jingdong Tian,et al.  Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries , 2011, Nature Protocols.

[113]  Patrick Cramer,et al.  RNA polymerase fidelity and transcriptional proofreading. , 2009, Current opinion in structural biology.

[114]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[115]  Arlen W. Johnson,et al.  The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model. , 2006, Genes & development.

[116]  C. Körner,et al.  X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA , 2005, Cell.

[117]  J. T. Kadonaga,et al.  Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly , 2005, Nature Structural &Molecular Biology.

[118]  N. Proudfoot,et al.  Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome , 2013, Cell reports.

[119]  G. Narlikar,et al.  Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler , 2017, Science.

[120]  Ali Hamiche,et al.  A chromatin remodelling complex involved in transcription and DNA processing , 2000, Nature.

[121]  T. Hughes,et al.  Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Danny Reinberg,et al.  Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains* , 2005, Journal of Biological Chemistry.

[123]  Hien G. Tran,et al.  Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes , 2003, The EMBO journal.

[124]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[125]  D. Wigley,et al.  Structure and mechanism of helicases and nucleic acid translocases. , 2007, Annual review of biochemistry.

[126]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[127]  Dong Wang,et al.  RNA polymerase II acts as a selective sensor for DNA lesions and endogenous DNA modifications , 2016, Transcription.

[128]  Song Tan,et al.  Nucleosome structural studies. , 2011, Current opinion in structural biology.

[129]  R. Kornberg Chromatin structure: a repeating unit of histones and DNA. , 1974, Science.