Regulator approximation and fundamental unit computation for real-quadratic orders
暂无分享,去创建一个
[1] J. Buchmann,et al. CRYPTOGRAPHY BASED ON NUMBER FIELDS WITH LARGE REGULATOR , 2000 .
[2] Alejandro Buchmann,et al. An analysis of the reduction algorithms for binary quadratic forms , 1997 .
[3] Jeffrey C. Lagarias,et al. On the computational complexity of determining the solvability or unsolvability of the equation ²-²=-1 , 1980 .
[4] Duncan A. Buell,et al. Binary Quadratic Forms: Classical Theory and Modern Computations , 1989 .
[5] H. Lenstra. On the calculation of regulators and class numbers of quadratic fields , 1982 .
[6] Johannes Buchmann,et al. Approximate Evaluation of L(1; ) , 1998 .
[7] Harvey Cohn,et al. A classical invitation to algebraic numbers and class fields , 1978 .
[8] Johannes Buchmann,et al. Implementation of a key exchange protocol using real quadratic fields (extended abstract) , 1991 .
[9] Richard Mollin,et al. On real quadratic fields of class number two , 1992 .
[10] Jeffrey Shallit,et al. Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.
[11] Arjen K. Lenstra,et al. Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[12] Michael J. Jacobson,et al. An Investigation of Bounds for the Regulator of Quadratic Fields , 1995, Exp. Math..
[13] Detlef Hühnlein,et al. On the Implementation of Cryptosystems Based on Real Quadratic Number Fields , 2000, Selected Areas in Cryptography.
[14] Richard P. Brent,et al. Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.
[15] Loo Keng Hua,et al. Introduction to number theory , 1982 .
[16] Bernd Meyer,et al. Cryptographic Protocols Based on Real-Quadratic A-fields , 1996, ASIACRYPT.
[17] Arnold Schönhage,et al. Fast algorithms - a multitape Turing machine implementation , 1994 .
[18] Anitha Srinivasan,et al. Computations of class numbers of real quadratic fields , 1998, Math. Comput..
[19] Michael J. Jacobson,et al. Subexponential class group computation in quadratic orders , 1999 .
[20] Christine Abel,et al. Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen , 1994 .
[21] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[22] Arnold Schönhage,et al. Fast reduction and composition of binary quadratic forms , 1991, ISSAC '91.
[23] Loo-Keng Hua. On the least solution of Pell's equation , 1942 .
[24] Ulrich Vollmer,et al. Asymptotically Fast Discrete Logarithms in Quadratic Number Fields , 2000, ANTS.
[25] Johannes A. Buchmann,et al. Cryptographic Protocols Based on Discrete Logarithms in Real-quadratic Orders , 1994, CRYPTO.
[26] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[27] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields , 1990 .
[28] Johannes Buchmann,et al. Algorithms for quadratic orders , 1994 .
[29] Johannes Buchmann,et al. Computing a reduced lattice basis from a generating system , 1992 .
[30] J. Buchmann. Einführung in die Kryptographie , 1999 .
[31] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .