Curated variation benchmarks for challenging medically-relevant autosomal genes

[1]  Jordan M. Eizenga,et al.  Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads , 2021, Nature Methods.

[2]  Ryan M. Layer,et al.  A complete reference genome improves analysis of human genetic variation , 2021, bioRxiv.

[3]  Michael M. Khayat,et al.  Exome variant discrepancies due to reference genome differences. , 2021, American journal of human genetics.

[4]  F. Sedlazeck,et al.  Towards population-scale long-read sequencing , 2021, Nature Reviews Genetics.

[5]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[6]  Christopher A. Miller,et al.  Failure to Detect Mutations in U2AF1 due to Changes in the GRCh38 Reference Sequence , 2021, bioRxiv.

[7]  A. Sharp,et al.  Pervasive cis effects of variation in copy number of large tandem repeats on local DNA methylation and gene expression. , 2021, American journal of human genetics.

[8]  Jordan M. Eizenga,et al.  Haplotype-aware variant calling enables high accuracy in nanopore long-reads using deep neural networks , 2021, bioRxiv.

[9]  Heng Li,et al.  Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm , 2021, Nature Methods.

[10]  Ryan L. Collins,et al.  Author Correction: A structural variation reference for medical and population genetics , 2021, Nature.

[11]  Steven L Salzberg,et al.  Liftoff: accurate mapping of gene annotations , 2020, Bioinform..

[12]  Kai Wang,et al.  PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions , 2020, bioRxiv.

[13]  Heng Li,et al.  The design and construction of reference pangenome graphs with minigraph , 2020, Genome biology.

[14]  Yadong Wang,et al.  Long-read-based human genomic structural variation detection with cuteSV , 2020, Genome Biology.

[15]  Nathan D. Olson,et al.  Benchmarking challenging small variants with linked and long reads , 2020, bioRxiv.

[16]  S. Seal,et al.  One in seven pathogenic variants can be challenging to detect by NGS: an analysis of 450,000 patients with implications for clinical sensitivity and genetic test implementation , 2020, Genetics in Medicine.

[17]  Ken Chen,et al.  A robust benchmark for detection of germline large deletions and insertions , 2020, Nature Biotechnology.

[18]  Ian T. Fiddes,et al.  A robust benchmark for detection of germline large deletions and insertions , 2020, Nature Biotechnology.

[19]  Sergey Koren,et al.  Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes , 2020, Nature Biotechnology.

[20]  Tariq Ahmad,et al.  A structural variation reference for medical and population genetics , 2020, Nature.

[21]  Sergey Koren,et al.  HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads , 2020, bioRxiv.

[22]  F. Mastaglia,et al.  Structural Variants May Be a Source of Missing Heritability in sALS , 2020, Frontiers in Neuroscience.

[23]  F. Sedlazeck,et al.  Structural variant calling: the long and the short of it , 2019, Genome Biology.

[24]  Alexander T. Dilthey,et al.  A diploid assembly-based benchmark for variants in the major histocompatibility complex , 2019, Nature Communications.

[25]  V. Bansal,et al.  Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing , 2019, Nature Communications.

[26]  Sergey Koren,et al.  Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome , 2019, Nature Biotechnology.

[27]  Tanner D. Jensen,et al.  Systematic analysis of dark and camouflaged genes reveals disease-relevant genes hiding in plain sight , 2019, Genome Biology.

[28]  Birgit Funke,et al.  Best practices for benchmarking germline small-variant calls in human genomes , 2019, Nature Biotechnology.

[29]  W. Xiao,et al.  Similarities and differences between variants called with human reference genome HG19 or HG38 , 2019, BMC Bioinformatics.

[30]  Chunlin Xiao,et al.  An open resource for accurately benchmarking small variant and reference calls , 2019, Nature Biotechnology.

[31]  J. Casanova,et al.  Rescue of recurrent deep intronic mutation underlying cell type–dependent quantitative NEMO deficiency , 2018, The Journal of clinical investigation.

[32]  Thomas Colthurst,et al.  A universal SNP and small-indel variant caller using deep neural networks , 2018, Nature Biotechnology.

[33]  Hugo Y. K. Lam,et al.  Deep convolutional neural networks for accurate somatic mutation detection , 2018, bioRxiv.

[34]  Donna M. Muzny,et al.  xAtlas: scalable small variant calling across heterogeneous next-generation sequencing experiments , 2018, bioRxiv.

[35]  Yeting Zhang,et al.  Functional equivalence of genome sequencing analysis pipelines enables harmonized variant calling across human genetics projects , 2018, Nature Communications.

[36]  Wouter De Coster,et al.  NanoPack: visualizing and processing long-read sequencing data , 2018, bioRxiv.

[37]  T. Hayakawa,et al.  Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates , 2017, BMC Evolutionary Biology.

[38]  Mauricio O. Carneiro,et al.  Scaling accurate genetic variant discovery to tens of thousands of samples , 2017, bioRxiv.

[39]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[40]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[41]  Yan Guo,et al.  Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. , 2017, Genomics.

[42]  Daniel L. Cameron,et al.  GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly , 2017, bioRxiv.

[43]  Shilpa Garg,et al.  WhatsHap: fast and accurate read-based phasing , 2016, bioRxiv.

[44]  F. Balloux,et al.  Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast , 2016, Nature Communications.

[45]  Birgit Funke,et al.  Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing , 2016, Genetics in Medicine.

[46]  Xiaoyu Chen,et al.  Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications , 2016, Bioinform..

[47]  F. Kronenberg,et al.  Structure, function, and genetics of lipoprotein (a) , 2016, Journal of Lipid Research.

[48]  Rachel L. Goldfeder,et al.  Medical implications of technical accuracy in genome sequencing , 2016, Genome Medicine.

[49]  Mark Yandell,et al.  Wham: Identifying Structural Variants of Biological Consequence , 2015, PLoS Comput. Biol..

[50]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[51]  Alexa B. R. McIntyre,et al.  Extensive sequencing of seven human genomes to characterize benchmark reference materials , 2015, Scientific Data.

[52]  Leo van Iersel,et al.  WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads , 2015, J. Comput. Biol..

[53]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[54]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[55]  Ira M. Hall,et al.  SAMBLASTER: fast duplicate marking and structural variant read extraction , 2014, Bioinform..

[56]  N. Lennon,et al.  Characterizing and measuring bias in sequence data , 2013, Genome Biology.

[57]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[58]  Ryan M. Layer,et al.  LUMPY: a probabilistic framework for structural variant discovery , 2012, Genome Biology.

[59]  V. Beneš,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[60]  Euan A Ashley,et al.  A public resource facilitating clinical use of genomes , 2012, Proceedings of the National Academy of Sciences.

[61]  C. Cole,et al.  COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.

[62]  A. Feinberg,et al.  Addition of H19 'loss of methylation testing' for Beckwith-Wiedemann syndrome (BWS) increases the diagnostic yield. , 2010, The Journal of molecular diagnostics : JMD.

[63]  A. Towbin,et al.  Chronic granulomatous disease , 2010, Pediatric Radiology.

[64]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[65]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[66]  H. Innan A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  I. Biros,et al.  Spinal muscular atrophy: untangling the knot? , 1999, Journal of medical genetics.

[68]  J. Melki,et al.  Spinal muscular atrophy. , 1997, Current opinion in neurology.