The evolution of soot morphology and nanostructure in laminar diffusion flame of surrogate fuels for diesel

[1]  Robert J. Santoro,et al.  The Transport and Growth of Soot Particles in Laminar Diffusion Flames , 1987 .

[2]  Constantine M. Megaridis,et al.  Morphological Description of Flame-Generated Materials , 1990 .

[3]  J. Lahaye Particulate carbon from the gas phase , 1992 .

[4]  A. Sarofim,et al.  Soot morphology: An application of image analysis in high‐resolution transmission electron microscopy , 1996, Microscopy research and technique.

[5]  A. M. Brasil,et al.  a Recipe for Image Characterization of Fractal-Like Aggregates , 1998 .

[6]  Mitchell D. Smooke,et al.  Computational and experimental study of soot formation in a coflow, laminar diffusion flame , 1999 .

[7]  R. Hurt,et al.  A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons , 2000 .

[8]  W. Whitten,et al.  Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry , 2000 .

[9]  J. Rouzaud,et al.  Quantitative high-resolution transmission electron microscopy: a promising tool for carbon materials characterization , 2002 .

[10]  Hongsheng Guo,et al.  Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames , 2003 .

[11]  R. L. Wal,et al.  Soot nanostructure: dependence upon synthesis conditions , 2004 .

[12]  Randy L. Vander Wal,et al.  Soot Nanostructure: Definition, Quantification and Implications , 2005 .

[13]  R. L. Wal,et al.  A method for structural characterization of the range of cylindrical nanocarbons: Nanotubes to nanofibers , 2005 .

[14]  Kyeong-Ook Lee,et al.  Effects of Exhaust System Components on Particulate Morphology in a Light-duty Diesel Engine , 2005 .

[15]  M. Choi,et al.  Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates , 2005 .

[16]  Ümit Özgür Köylü,et al.  Effect of operating conditions on the size, morphology, and concentration of submicrometer particulates emitted from a diesel engine , 2006 .

[17]  C. Sorensen,et al.  Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames , 2006 .

[18]  Juhun Song,et al.  Fuel Property Impacts on Diesel Particulate Morphology, Nanostructures, and NOx Emissions , 2007 .

[19]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[20]  Jean-Noël Rouzaud,et al.  Structure–property relationship in nanostructures of young and mature soot in premixed flames , 2009 .

[21]  Morphology and Microstructure of Engine-Emitted Particulates , 2009 .

[22]  R. L. Wal,et al.  Fingerprinting soot (towards source identification): physical structure and chemical composition. , 2010 .

[23]  R. L. Wal,et al.  Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D , 2011 .

[24]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[25]  Randy L. Vander Wal,et al.  Development of an HRTEM image analysis method to quantify carbon nanostructure , 2011 .

[26]  Mingfa Yao,et al.  Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction , 2013 .

[27]  Murray J. Thomson,et al.  The evolution of soot morphology in a laminar coflow diffusion flame of a surrogate for Jet A-1 , 2013 .

[28]  Size Distribution and Structure of Wall-Deposited Soot Particles in an Automotive-Size Diesel Engine , 2013 .

[29]  J. Lighty,et al.  Sooting behaviors of n-butanol and n-dodecane blends , 2014 .

[30]  Sebastian Mosbach,et al.  Sooting tendency of paraffin components of diesel and gasoline in diffusion flames , 2014 .

[31]  Javier Taboada,et al.  New methodology to determine air quality in urban areas based on runs rules for functional data , 2014 .

[32]  JoAnn S. Lighty,et al.  Soot Oxidation Kinetics Under Pressurized Conditions , 2014 .

[33]  Atsushi Teraji,et al.  TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings , 2015 .

[34]  J. Rouzaud,et al.  Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM) , 2015 .

[35]  S. Kook,et al.  Structural evolution of soot particles during diesel combustion in a single-cylinder light-duty engine , 2015 .

[36]  Markus Kraft,et al.  HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels , 2016 .

[37]  Sebastian Mosbach,et al.  Sooting tendency and particle size distributions of n-heptane/toluene mixtures burned in a wick-fed diffusion flame , 2016 .

[38]  M. Thomson,et al.  Morphological analysis of soot agglomerates from biodiesel surrogates in a coflow burner , 2017 .