Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2.

A good correlation was obtained between the electronic properties of Cu-doped anatase TiO2 by virtue of both physical chemistry characterization and theoretical calculations. Pure and Cu-doped TiO2 were synthesized. The composition, structural and electronic properties, and the band gap energy were obtained using several techniques. The method of synthesis used produces Cu-doped anatase TiO2, and XRD, XPS and Raman spectroscopy indicate that Cu atoms are incorporated in the structure by substitution of Ti atoms, generating a distortion of the structure and oxygen vacancies. In turn, the band gap energy of the synthesized samples decrease drastically with the Cu doping. Moreover, periodic density functional theory (DFT-periodic) calculations were carried out both to model the experimentally observed doped structures and to understand theoretically the experimental structures obtained, the formation of oxygen vacancies and the values of the band gap energy. From the analysis of density of states (DOS), projected density of states (PDOS) and the electron localization function (ELF) a decrease in the band gap is predicted upon increasing the Cu doping. Thus, the inclusion of Cu in the anatase structure implies a covalent character in the Cu-O interaction, which involves the appearance of new states in the valence band maximum with a narrowing in the band gap.

[1]  A. Mohamed,et al.  Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. , 2014, Nanoscale.

[2]  P. Chu,et al.  Nanostructured TiO2 for energy conversion and storage , 2013 .

[3]  Seong Sik Shin,et al.  Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion. , 2013, Nanoscale.

[4]  Zisheng Zhang,et al.  Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance , 2013 .

[5]  J. J. Gallardo,et al.  A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap , 2013 .

[6]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[7]  F. C. Hernandez,et al.  Sonosynthesis of nanostructured TiO2 doped with transition metals having variable bandgap , 2013 .

[8]  A. Mohamed,et al.  Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation , 2013 .

[9]  S. Ogale,et al.  Exploring anatase-TiO2 doped dilutely with transition metal ions as nano-catalyst for H2O2 decomposition: Spectroscopic and kinetic studies , 2013 .

[10]  S. K. Mishra,et al.  Study of structural transformation in TiO2 nanoparticles and its optical properties , 2013 .

[11]  Junying Zhang,et al.  Electronic structure and photocatalytic activity of N/Mo doped anatase TiO2 , 2012 .

[12]  A. Yoshigoe,et al.  The temperature dependence of Cu2O formation on a Cu(110) surface with an energetic O2 molecular beam , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2 , 2012, 1203.0701.

[14]  J. Navas,et al.  Improving open‐circuit voltage in DSSCs using Cu‐doped TiO2 as a semiconductor , 2012 .

[15]  A. Márquez,et al.  Communication: improving the density functional theory+U description of CeO2 by including the contribution of the O 2p electrons. , 2012, The Journal of chemical physics.

[16]  N. English,et al.  Electronic properties of anatase-TiO2 codoped by cation-pairs from hybrid density functional theory calculations , 2011 .

[17]  M. Rincón,et al.  Catalytic and photocatalytic performance of mesoporous CuxO–TiO2 , 2011 .

[18]  S. Date,et al.  Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method , 2011 .

[19]  E. Menéndez-Proupin,et al.  Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations. , 2011, Physical chemistry chemical physics : PCCP.

[20]  Christian Elsässer,et al.  Density functional theory study of dopants in polycrystalline TiO 2 , 2011 .

[21]  Wei Zhao,et al.  TiO₂ photoanode structure with gradations in V concentration for dye-sensitized solar cells. , 2011, ACS applied materials & interfaces.

[22]  C. Karunakaran,et al.  Cu-doped TiO(2) nanoparticles for photocatalytic disinfection of bacteria under visible light. , 2010, Journal of colloid and interface science.

[23]  S. Ogale,et al.  Surface texture and specific adsorption sites of sol–gel synthesized anatase TiO2 nanoparticles , 2010 .

[24]  Niall J. English,et al.  Synergistic Effects on Band Gap-Narrowing in Titania by Codoping from First-Principles Calculations , 2010 .

[25]  Sumei Huang,et al.  Improved‐Performance Dye‐Sensitized Solar Cells Using Nb‐Doped TiO2 Electrodes: Efficient Electron Injection and Transfer , 2010 .

[26]  F. Illas,et al.  Density Functional Theory Study of the Interaction of Cu, Ag, and Au Atoms with the Regular CeO2 (111) Surface , 2010 .

[27]  Yang Huang,et al.  Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells , 2010 .

[28]  R. López,et al.  PHOTOPHYSICAL AND PHOTOCATALYTIC PROPERTIES OF NANOSIZED COPPER-DOPED TITANIA SOL-GEL CATALYSTS , 2009 .

[29]  Bin Zhou,et al.  Photoeletrochemical generation of hydrogen over carbon-doped TiO2 photoanode , 2009 .

[30]  Hsisheng Teng,et al.  Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. , 2009, Physical chemistry chemical physics : PCCP.

[31]  Junying Zhang,et al.  TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. , 2009, ACS applied materials & interfaces.

[32]  B. K. Dutta,et al.  Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light , 2009 .

[33]  A. Miotello,et al.  Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst , 2009 .

[34]  T. Yokoyama,et al.  Visible Light-Sensitive Cu(II)-Grafted TiO2 Photocatalysts: Activities and X-ray Absorption Fine Structure Analyses , 2009 .

[35]  Gongxuan Lu,et al.  The Doping Effect of Bi on TiO2 for Photocatalytic Hydrogen Generation and Photodecolorization of Rhodamine B , 2009 .

[36]  N. English,et al.  First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania , 2009 .

[37]  Jin Young Kim,et al.  Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells , 2009 .

[38]  K. Tennakone,et al.  A high efficiency indoline-sensitized solar cell based on a nanocrystalline TiO(2) surface doped with copper. , 2008, Nanotechnology.

[39]  A. Vlaicu,et al.  Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions , 2008 .

[40]  S. Woo,et al.  Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction , 2008 .

[41]  Ming Lin,et al.  Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method , 2008 .

[42]  J. Wu,et al.  Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight , 2008 .

[43]  Sotiris E. Pratsinis,et al.  Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol , 2008 .

[44]  C. Calzado,et al.  Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface , 2008 .

[45]  A. Murphy Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting , 2007 .

[46]  S. Russo,et al.  Nonmetal Doping at Octahedral Vacancy Sites in Rutile: A Quantum Mechanical Study , 2007 .

[47]  A. Toro‐Labbé Theoretical aspects of chemical reactivity , 2007 .

[48]  Da-yung Wang,et al.  Influence of metal plasma ion implantation on photo-sensitivity of anatase TiO2 thin films , 2006 .

[49]  Baibiao Huang,et al.  Theoretical study of N-doped TiO2 rutile crystals. , 2006, The journal of physical chemistry. B.

[50]  G. Colón,et al.  Cu-doped TiO2 systems with improved photocatalytic activity , 2006 .

[51]  Dai Songyuan,et al.  Influence of Yb-Doped Nanoporous TiO 2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells , 2006 .

[52]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[53]  S. Pratsinis,et al.  Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry , 2005 .

[54]  L. Errico,et al.  Appearance of room-temperature ferromagnetism in Cu-doped TiO 2-δ films , 2005, cond-mat/0505602.

[55]  Jarnuzi Gunlazuardi,et al.  Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method , 2005 .

[56]  Young-Jin Jung,et al.  Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions. , 2005, Journal of colloid and interface science.

[57]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[58]  A. Gonzalez-Elipe,et al.  Structural, Optical, and Photoelectrochemical Properties of M n + −TiO 2 Model Thin Film Photocatalysts , 2004 .

[59]  B. R. Churagulov,et al.  Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions , 2003 .

[60]  R. Amal,et al.  Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide , 2002 .

[61]  Doug A. Bowman,et al.  A Tool for the Interactive 3D Visualization of Electronic Structure in Molecules and Solids , 2002, Comput. Chem..

[62]  W. Jaegermann,et al.  XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface: Alignment of Energy Levels , 2002 .

[63]  M. Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001, cond-mat/0107229.

[64]  B. Silvi,et al.  Direct Space Representation of the Metallic Bond , 2000 .

[65]  F. Mizukami,et al.  Microstructure and phase transformation behavior of doped nanostructured titania , 1999 .

[66]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[67]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[68]  T. Sasaki,et al.  Semiconductor Nanosheet Crystallites of Quasi-TiO2 and Their Optical Properties , 1997 .

[69]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[70]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[71]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[72]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[73]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .

[74]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[75]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[76]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[77]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[78]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[79]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[80]  W. White,et al.  Raman spectra of stoichiometric and defect rutile , 1991 .

[81]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[82]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[83]  H. Hagemann,et al.  Raman spectra of single crystal CuO , 1990 .

[84]  J. Stencel Raman spectroscopy for catalysis , 1990 .

[85]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .

[86]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[87]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[88]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[89]  D. Riley,et al.  An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals , 1945 .

[90]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .